第十二章 非参数回归及其相关问题第一节 参数回归问题的回顾在线性回归模型中,我们总是假定总体回归函数是线性的,即多元线性回归模型一般形式为: 总体回归函数(PRF)但是,经验和理论都证明,当不是线性函数时,基于最小二乘的回归效果不好,非参数回归就是在对的形式不作任何假定的前提下研究估计。例 设二维随机变量,其密度函数为,求.解:从例可知,仅与有关,条件期望表明Y与X在条件期望的意义下相关。由样本均值估计总体均值的思想出发,假设样本,中有相当恰好等于,不妨记为,自然可取相应的的样本,用他们的平均数去估计。可是在实际问题中,一般不会有很多的值恰好等于。这个估计式,仿佛是一个加权平均数,对于所有的,如果等于,则赋予的权,如果不等于,则赋予零权。由此可启发我们在思路上产生了一个飞跃。即对于任一个,用的加权和去估计,即,其中,估计。问题是如何赋权,一种合乎逻辑的方法是,等于或靠非常近的那些,相应的权大一些,反之小权或零权。两种模式:设上的随机变量,为的次观测值。实际应用中 ,为非随机的,依条