. .第5讲 二次函数的图象和性质一、知识点回顾 1. 二次函数解析式的几种形式: 一般式:(a、b、c为常数,a0) 顶点式:(a、h、k为常数,a0),其中(h,k)为顶点坐标。 交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a0,(也叫两根式)。 2. 二次函数的图象 二次函数的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。 任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:左加右减,上加下减,具体平移方法如下表所示。 在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果