线性(整数)规划线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素.只要确定决策变量、约束条件、目标函数就能建立相应的线性规划模型。示例某钢管零售商从钢管厂进货,将钢管按照顾客要求的长度进行切割,称为下料。假定进货时得到的原料钢管长度都是19m。1)现有一客户需要50根长4m、20根长6m和15根长8m的钢管。应如何下料最节省?2)零售商如果采用的不同切割模