数学分析期末考试试题一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、 收敛的cauchy收敛原理3、 全微分二、 计算题:(每小题8分,共32分)1、2、求由曲线和围成的图形的面积和该图形绕x轴旋转而成的几何体的体积。3、求的收敛半径和收敛域,并求和4、已知 ,求 三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数 2、讨论反常积分的敛散性3、讨论函数列的一致收敛性四、证明题(每小题10分,共20分)1、设,证明发散2、证明函数 在(0,0)点连续且可偏导,但它在该点不可微。,参考答案一、1、设在连续,是在上的一个原函数,则成立2、使得,成立3、设为开集,是定义在上的二元函数,为中的一定点,若存在只与点有关而与无关的常数A和B,使得则称函数f在点处是可微的,并称为在点处的全微分资料个人收集整理,勿做商业用途二、1、分子和分母同时求导(8分)2、 、两曲线的交点为(0,0),(1,1)(2分)所求的面积为: