参数方程与极坐标(精华版)10页.doc

上传人:晟*** 文档编号:6610188 上传时间:2021-09-10 格式:DOC 页数:10 大小:626KB
下载 相关 举报
参数方程与极坐标(精华版)10页.doc_第1页
第1页 / 共10页
参数方程与极坐标(精华版)10页.doc_第2页
第2页 / 共10页
参数方程与极坐标(精华版)10页.doc_第3页
第3页 / 共10页
参数方程与极坐标(精华版)10页.doc_第4页
第4页 / 共10页
参数方程与极坐标(精华版)10页.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

参数方程与极坐标参数方程知识回顾:一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个参数t的函数,即,其中,t为参数,并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数t叫做参变数,简称参数二、二次曲线的参数方程1、圆的参数方程:中心在(x0,y0),半径等于r的圆:(为参数,的几何意义为圆心角),特殊地,当圆心是原点时,注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵坐标与参数间的关系。Eg1:已知点P(x,y)是圆x2+y2-6x-4y+12=0上的动点,求:(1)x2+y2的最值;(2)x+y的最值;(3)点P到直线x+y-1=0的距离d的最值。Eg2:将下列参数方程化为普通方程(1) x=2+3cos (2) x=sin (3) x=t+ y=3sin y=cos y=t2+总结:参数方程化为普通方程步骤:(1)消参(2)求

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。