v1.0 可编辑可修改第2章 线性方程组的解法 -学习小结一、 本章学习体会本章主要学习的是线性方程组的解法。而我们则主要学习了高斯消去法、直接三角分解法以及迭代法三种方法。这三种方法的优缺点以及适用范围各有不同。高斯消去法中,我们又学习了顺序高斯消去法以及列主元素高斯消去法。顺序高斯消去法可以得到方程组的精确解,但要求系数矩阵的主对角线元素不为零,而且该方法的数值稳定性没有保证。但列主元素高斯消去法因为方程顺序的调整,其有较好的数值稳定性。直接三角分解法中,我们主要学习了Doolitte分解法与Crout分解法。其思想主要是:令系数矩阵A=UL,其中L为下三角矩阵,U是上三角矩阵,为求AX=b 的解,则引进Ly=b,Ux=y两个方程,以求X得解向量。这种方法计算量较小,但是条件苛刻,且不具有数值稳定性。迭代法(逐次逼近法)是从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是所求问题的精确解,只经过有限次运算得不到精确解。该方法要求迭代收敛,而且只经过有限次迭代,减少了运算次数,但是该方法无法得到方程组的精