数学建模之传染病模型(共5页).doc

上传人:晟*** 文档编号:6815567 上传时间:2021-09-13 格式:DOC 页数:5 大小:186.50KB
下载 相关 举报
数学建模之传染病模型(共5页).doc_第1页
第1页 / 共5页
数学建模之传染病模型(共5页).doc_第2页
第2页 / 共5页
数学建模之传染病模型(共5页).doc_第3页
第3页 / 共5页
数学建模之传染病模型(共5页).doc_第4页
第4页 / 共5页
数学建模之传染病模型(共5页).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

第五章 微 分 方 程 模 型如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型.1 传 染 病 模 型建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题.考虑某地区的传染病的传染情况,设该地区人口总数为,既不考虑生死,也不考虑迁移,时间以天为计量单位.一. SI 模 型假设条件:1. 人群分为易感染者(Susceptible)和已感染者(Infective)两类人,简称为健康人和病人,在时刻这两类人在总人数中所占比例分别记作和.2. 每个病人每天有效接触的平均人数是(常数),称为日接触率,当病人与健康人有效接触时,使健康者受感染变为病人.试建立描述变化的数学模型.解: 由假设2知,每个病人每天可使个健康者变为病人,又由于病人数为,每天共有个健康人被感染.于是就是病人数的增加率,即有(1) 而.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。