拉普拉斯算子:四种方法:分离变量法、行波法、积分变换法、格林函数法定解问题:初始条件.边界条件.其他波动方程的初始条件:热传导方程的初始条件初始时刻的温度分布 :泊松方程和拉普拉斯方程的初始条件:不含初始条件,只含边界条件条件波动方程的边界条件:(1)固定端:对于两端固定的弦的横振动,其为:或:(2)自由端:x=a 端既不固定,又不受位移方向力的作用.(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。定解问题的分类和检验:(1) 初始问题:只有初始条件,没有边界条件的定解问题;(2) 边值问题:没有初始条件,只有边界条件的定解问题;(3) 混合问题:既有初始条件,也有边界条件的定解问题。 解的存在性:定解问题是否有解; 解的唯一性:是否只有一解; 解的稳定性:定解条件有微小变动时,解是否有相应的微小变动。分离变量法:基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。把偏微分方程化为常微分方程来处