一、实验题目 维纳滤波器的设计 (结维纳霍夫方程,最小的均方误差) 维纳-霍夫方程矩阵形式 已知期望信号与观测数据的互相关函数及观测数据的自相关函数二、实验要求:设计一维纳滤波器。(1) 产生三组观测数据,首先根据产生信号,将其加噪(信噪比分别为),得到观测数据。(2) 估计,的模型参数。X(n)=w(n)+bw(n-q)假设信号长度为,模型阶数为,分析实验结果,并讨论改变,对实验结果的影响。三、实验原理:维纳滤波器设计的任务就是选择,使其输出信号与期望信号误差的均方值最小,实质是解维纳霍夫方程。假设滤波系统是一个线性时不变系统,它的和输入信号都是复函数,设 n=0,1,考虑系统的因果性,可得到滤波器的输出n=0,1,设期望信号d(n),误差信号及其均方误差分别为要使均方误差为最小,需满足:由上式可以推导得到上式说明,均方误差达到最小值的充要条件是误差信
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。