罗尔定理的几种类型及其应用彭丹(德州学院数学系,山东德州 253023)摘要:本文通过对罗尔定理的条件以及条件的几何意义、罗尔定理的证明以及运用构造函数的思想研究罗尔定理的一些性质及其应用、罗尔定理推广形式的总结与再推广,从而达到对罗尔定理的更深入的研究。关键词:罗尔定理;性质;应用;推广 引言 微分中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础,在许多方面它都有重要的作用,在进行一些公式推导与定理证明中都有很多应用。如果要了解函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理就是起这种作用的。三大微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础。本文着重对罗尔定理的性质、推广形式以及应用进行深入的研究,从而更好的了解微分中值定理.1 罗尔定理罗尔在数学上的成就主要是在代数学方面,专长于丢蕃图方程 的研究。他在1691年出版了论著方程的解法