解析几何中对称问题的常见求解方法关键词:对称点、对称直线解析几何中的对称问题在现行中学数学材料中没有按章节进行系统编排,只是分散地穿插在直线、曲线部分的题型之中。但这部分知识是解析几何中重要的基础内容,也是近年来的高考热点之一。对称点、对称直线的求法,对称问题的简单应用及其解题过程中所体现的思想和方法是学生必须掌握的。这就要求教师在讲完直线、曲线部分后,需对对称问题进行适当的归纳、总结。使学生对这部分知识有一个较完整的、系统的认识,从而解决起对称问题才能得心应手。本人就此谈一下中学解析几何中常见的对称问题和解决办法。一、关于点对称。1、点关于点对称。点关于原点的对称点坐标是;点关于某一点的对称点的坐标,利用中点坐标式求得为。2、直线关于点对称。 直线L:关于原点的对称直线。设所求直线上一点为,则它关于原点的对称点为,因为点在直线上,故有,即; 直线关于某一点的对称直线。它的求法分两种情况:1、当在上时,它的对称直线为过点的任一条直线。2、当点不在上时,对称直线的求法为:解法(一):在直线上任取一点,则它关于的对称点为,因为点在上,把点坐标代入直线在中,便得到