递推式求数列通项公式常见类型及解法 对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构8造把问题转化。下面分类说明。一、型例1. 在数列an中,已知,求通项公式。解:已知递推式化为,即,所以。将以上个式子相加,得,所以。二、型例2. 求数列的通项公式。解:当,即当,所以。三、型例3. 在数列中,求。解法1:设,对比,得。于是,得,以3为公比的等比数列。所以有。解法2:又已知递推式,得上述两式相减,得,因此,数列是以为首项,以3为公比的等比数列。所以,所以。四、型例4. 设数列,求通项公式。解:设,则,所以,即。设这时,所以。由于bn是以3为首项,以为公比的等比数列,所以有。由此得:。说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。五、型例5. 已知b0,b
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。