导数应用:含参函数的单调性讨论(一)(共5页).doc

上传人:晟*** 文档编号:7598894 上传时间:2021-11-11 格式:DOC 页数:5 大小:449.50KB
下载 相关 举报
导数应用:含参函数的单调性讨论(一)(共5页).doc_第1页
第1页 / 共5页
导数应用:含参函数的单调性讨论(一)(共5页).doc_第2页
第2页 / 共5页
导数应用:含参函数的单调性讨论(一)(共5页).doc_第3页
第3页 / 共5页
导数应用:含参函数的单调性讨论(一)(共5页).doc_第4页
第4页 / 共5页
导数应用:含参函数的单调性讨论(一)(共5页).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

精选优质文档-倾情为你奉上导数应用:含参函数的单调性讨论(一)一、思想方法:讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。二、典例讲解例1 讨论的单调性,求其单调区间解:的定义域为 (它与同号)I)当时,恒成立,此时在和都是单调增函数,即的增区间是和;II) 当时 此时在和都是单调增函数,在和都是单调减函数,即的增区间为和;的减区间为和.步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。变式练习1 : 讨论的单调性,求其单调区间 解:的定义域为 (它与同号)I)当时,恒成立,此时在为单调增函数,即的增区间为,不存在减区间;II) 当时 ;

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。