中考数学中的最值问题解法(共25页).doc

上传人:晟*** 文档编号:7661155 上传时间:2021-11-12 格式:DOC 页数:25 大小:782KB
下载 相关 举报
中考数学中的最值问题解法(共25页).doc_第1页
第1页 / 共25页
中考数学中的最值问题解法(共25页).doc_第2页
第2页 / 共25页
中考数学中的最值问题解法(共25页).doc_第3页
第3页 / 共25页
中考数学中的最值问题解法(共25页).doc_第4页
第4页 / 共25页
中考数学中的最值问题解法(共25页).doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上中考数学几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1. 如图,MON=90,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【 】A BC5D例2.在锐角三角形ABC中,BC=,ABC=45,BD平分ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 。例3.如图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。