三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE至F,使 ,连结CF,则 ,有AD FC,所以FC BD,则四边形BCFD是平行四边形,DF BC。因为 ,所以DE 法2:如图所示,过C作 交DE的延长线于F,则 ,有FC AD,那么FC BD,则四边形BCFD为平行四边形,DF BC。因为 ,所以DE 法3:如图所示,延长DE至F,使 ,连接CF、DC、AF,则四边形ADCF为平行四边形,有AD CF,所以FC BD,那么四边形BCFD为平行四边形,DF BC。因为 ,所以DE 法4:如图所示,过点E作MNAB,过点A作AMBC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都为平行四边形,所以DE=AM=NC=BN,DEBC,即DE。法5:如图所示,过三个顶点分别向中位线作垂线二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导