精选优质文档-倾情为你奉上第3课时 二次函数的实际应用最大(小)值问题例1:求下列二次函数的最值:(1)求函数的最值解:当时,有最小值,无最大值 (2)求函数的最值 解:,对称轴为当例2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件元,利润为元,为涨价时的利润,为降价时的利润则: 当,即:定价为65元时,(元) 当,即:定价为57.5元时,(元)综合两种情况,应定价为65元时,利润最大练习:1某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件如何提高售价,才能在半个月内获得最大利润?解:设每件价格
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。