精选优质文档-倾情为你奉上行测数量关系知识点整理1.能被2,3,4,5,6,整除的数字特点。2.同余问题口诀:“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。同余问题。一个数除以4余1,除以5余1,除以6余1,这个数字是?(4,5,6的最小公倍数60n+1)差同减差。一个数除以4余1,除以5余2,除以6余3,这个数是?因为4-1=5-2=6-3=3,所以取-3, 表示为60n-3。和同加和。“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。3.奇偶特性。奇奇=偶 奇偶=奇 偶偶=偶 奇偶=偶 奇奇=奇 偶偶=偶;例:同时扔出A、B两个骰子,两个骰子出现的数字的奇为偶数的情形有多少种? 解析:偶偶 C3.1*C3.1 + 奇偶C3.1*C3.1+偶奇C3.1*C3.1=27;4.一个数如果被拆分成多个自然数的