数学专业英语第2章课后答案.docx

上传人:h**** 文档编号:796162 上传时间:2018-11-01 格式:DOCX 页数:13 大小:42.76KB
下载 相关 举报
数学专业英语第2章课后答案.docx_第1页
第1页 / 共13页
数学专业英语第2章课后答案.docx_第2页
第2页 / 共13页
数学专业英语第2章课后答案.docx_第3页
第3页 / 共13页
数学专业英语第2章课后答案.docx_第4页
第4页 / 共13页
数学专业英语第2章课后答案.docx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、2.12.比:ratio 比例:proportion 利率:interest rate 速率:speed 除:divide 除法:division 商:quotient 同类量:like quantity 项:term 线段:line segment 角:angle 长度:length 宽:width高度:height 维数:dimension 单位:unit 分数:fraction 百分数:percentage3.(1)一条线段和一个角的比没有意义,他们不是相同类型的量.(2)比较式通过说明一个量是另一个量的多少倍做出的,并且这两个量必须依据相同的单位.(5)为了解一个方程,我们必须移项,直

2、到未知项独自处在方程的一边,这样就可以使它等于另一边的某量.4.(1)Measuring the length of a desk, is actually comparing the length of the desk to that of a ruler.(3)Ratio is different from the measurement, it has no units. The ratio of the length and the width of the same book does not vary when the measurement unit changes.(5)60

3、 percent of students in a school are female students, which mean that 60 students out of every 100 students are female students.2.22.初等几何:elementary geometry 三角学:trigonometry 余弦定理:Law of cosines 勾股定理/毕达哥拉斯定理:Gou-Gu theorem/Pythagoras theorem 角:angle 锐角:acute angle 直角:right angle 同终边的角:conterminal an

4、gles 仰角:angle of elevation 俯角:angle of depression 全等:congruence 夹角:included angle 三角形:triangle 三角函数:trigonometric function直角边:leg 斜边:hypotenuse 对边:opposite side 临边:adjacent side 始边:initial side 解三角形:solve a triangle 互相依赖:mutually dependent 表示成:be denoted as 定义为:be defined as3.(1)Trigonometric functi

5、on of the acute angle shows the mutually dependent relations between each sides and acute angle of the right triangle.(3)If two sides and the included angle of an oblique triangle are known, then the unknown sides and angles can be found by using the law of cosines.(5)Knowing the length of two sides

6、 and the measure of the included angle can determine the shape and size of the triangle. In other words, the two triangles made by these data are congruent.4.(1)如果一个角的顶点在一个笛卡尔坐标系的原点并且它的始边沿着 x轴正方向,这个角被称为处于标准位置.(3)仰角和俯角是以一条以水平线为参考位置来测量的,如果正被观测的物体在观测者的上方,那么由水平线和视线所形成的角叫做仰角.如果正被观测的物体在观测者的下方,那么由水平线和视线所形成

7、的的角叫做俯角.(5)如果我们知道一个三角形的两条边的长度和对着其中一条边的角度,我们如何解这个三角形呢?这个问题有一点困难来回答,因为所给的信息可能确定两个三角形,一个三角形或者一个也确定不了.2.32.素数:prime 合数:composite 质因数:prime factor/prime divisor 公倍数:common multiple 正素因子: positive prime divisor 除法算式:division equation 最大公因数:greatest common divisor(G.C.D) 最小公倍数: lowest common multiple(L.C.M

8、) 整除:divide by 整除性:divisibility 过程:process 证明:proof 分类:classification 剩余:remainder 辗转相除法:Euclidean algorithm 有限集:finite set 无限的:infinitely 可数的countable 终止:terminate 与矛盾:contrary to3.(1)We need to study by which integers an integer is divisible, that is , what factor it has. Specially, it is sometime

9、 required that an integer is expressed as the product of its prime factors.(3)The number 1 is neither a prime nor a composite number;A composite number in addition to being divisible by 1 and itself, can also be divisible by some prime number.(5)The number of the primes bounded above by any given fi

10、nite integer N can be found by using the method of the sieve Eratosthenes.4.(1)数论中一个重要的问题是哥德巴赫猜想,它是关于偶数作为两个奇素数和的表示.(3)一个数,形如 2p-1的素数被称为梅森素数.求出 5个这样的数.(5)任意给定的整数 m和素数 p,p的仅有的正因子是 p和 1,因此仅有的可能的 p和 m的正公因子是 p和 1.因此,我们有结论:如果 p是一个素数,m 是任意整数,那么 p整除 m,要么(p,m)=1.2.42.集:set 子集:subset 真子集:proper subset 全集:univ

11、erse 补集:complement 抽象集:abstract set 并集:union 交集:intersection 元素:element/member 组成:comprise/constitute包含:contain 术语:terminology 概念:concept 上有界:bounded above 上界:upper bound 最小的上界:least upper bound 完备性公理:completeness axiom3.(1)Set theory has become one of the common theoretical foundation and the impor

12、tant tools in many branches of mathematics.(3)Set S itself is the improper subset of S; if set T is a subset of S but not S, then T is called a proper subset of S.(5)The subset T of set S can often be denoted by x, that is, T consists of those elements x for which P(x) holds.(7)This example makes th

13、e following question become clear, that is, why may two straight lines in the space neither intersect nor parallel.4.(1)设 N是所有自然数的集合,如果 S是所有偶数的集合,那么它在 N中的补集是所有奇数的集合.(3)一个非空集合 S称为由上界的,如果存在一个数 c具有属性:x=1,这个 n元数组称为一个 n维点或者一个 n维向量,各个数a1,a2,an 称为这个向量的坐标或者分量。(3)向量 x1,x2,xn称为线性相关的,如果存在不全为 0的标量使得a1x1+a2x2+an

14、xn=0.向量 x1,x2xn 称为线性无关的,如果x1,x2xn 不是线性相关的 。2.72.向量空间:vector space 行向量:row vector 列向量:column vector 线性相关:linearly dependent 线性无关:linearly independent 线性组合:linear combination 数量级:scalarproduct 矩阵:matrix 方阵:square matrix 行列式:determinant 逆矩阵:inverse matrix 单位矩阵:identity matrix 零矩阵:zero matrix 变换:transfo

15、rmation 到上的:onto 同构:isomorphism 同构的:isomorphic 应用微分方程:applied differential equations 数理经济:mathematical economics 量子力学:quantum mechanics 相容的:consistent 最终的:ultimately3.(1)Linear combination, linear dependence and linear independence are all important concepts of linear spaces.(3)Not only matrix can b

16、e used to solve a system of linear equations, but also can be used to judge whether the system of equations have solutions and whether the solution is unique.(5)This conclusion is contradictory to the hypothesis of the problem, so the proposition to be proved is true.(7)let V be an n-dimensional vec

17、tor space over the field F and W be an m-dimensional vector space over the field F. Let B and B be ordered bases for U and W respectively. Then any linear transformation T from V into W is determined by the matrix of T relative to B and B.4.(1)如果 V和 W是在域 F上的向量空间,任何 V到 W的到上的一一对应的线性变化 T称为一个 V到 W到上的同构。

18、如果存在一个 V到 W到上的同构,我们说V同构于 W。(3)当 p=1,一个 p*q的矩阵只有一行,称为一个行向量。当 q=1时,该矩阵只有一列,称为一个列向量。当 p和 q都是 1时,这种情况相当不值一提,这里不需要关注. 一个有 p个元素的列向量我们成为一个 p向量,所以一个 p向量是一个 p*1的矩阵。(5)一个 m*n的矩阵有 m个行向量和 n列向量。设 A是一个有实数元素的 n阶方阵,那么 A的 n个行向量是线性无关的当且仅当行列式|A|不等于 0.进一步,A的 n个列向量是线性相关的当且仅当 A的 n个列向量是线性相关的。332.8函数关系:function relation 表格

19、:table 反函数:inverse function 简单函数:simple function 特征函数:characteristic function 复合函数:composite function 映射:mapping 定义域:domain 值域:range 像:image与成正比:be directly proportional to 正变:direct variation 反变:inverse variation 性质:property 按推广的定义:in the extended sense 普遍化:generalize/universalize 并入:incorporate 无穷

20、大:infinite 最大值:maximum 可测空间:measurable space3.(1)Because the concept of function originated in physics, in the seventeenth century, people once believed that the function relation was nothing but a formula.(3)If to each value of the variable x, the variable y has a definite value corresponding,then

21、the variable y is the function of variable x.(5)If f is a mapping from a space X to another space Y and g is a mapping from the space Y to the another space Z, then we can define a composite mapping h=g.f, which is a mapping from X to Z.4.(1)函数提供了一个研究一些变量的方法,所研究的变量随着其他的量变化,也就是说,当一个量的变化引起了另一个量相应的变化时。

22、(3)对一个函数 f:D-R.我们定义 f(D)=y in R|y=f(x) x 属于 D,并 f(D)是f的像。我们说 f:D-R 达到一个最大值,如果使像 f(D)有一个最大值,即有一个点 x0属于 D使得 f(x)=N.(5)Suppose the function f(x) is defined on the interval(a,infinite). If any c0, there exists a positive integer K such that |f(x)-A|=K(where A is a constant), then f(x) is said to converg

23、e to A as X-+infinite. If g(x)=-f(x)converges to A as xinfinite, then f(x) is said to converge to A as xinfinite. If f(x) converges to A both as x-+infinite and as xinfinite, then f(x) is said to converge to A as x-infinite.4.(1)一个序列an被称为有极限 L如果对于任意的正整数 c,存在另一个正整数 N(N 可能与 c有关) ,使得|an-L|=N成立。一个不收敛的数列

24、就被称为发散的。(3)短语“收敛序列”只适用于极限是有限的序列。一个序列具有无穷极限被称为发散的。当然,发散序列并不具有无穷极限,例子由下面公式定义:(5)引理 假设序列dn收敛于数 d ,并且 dn=0对于每一个自然数 n成立,那么我们有 d0。上一个引理断言,一个非负数收敛序列也有一个非负的极限。一个正数的收敛序列也有一个正的极限,这不总是真实的。例如 1/n是一个收敛于 0的正数列。2.102.导数:derivation 微分:differential 切线:tangent line 即时速度:instantaneous velocity 差商:difference quotient 可

25、视化的解释:visual interpretation 子区域:subdomain 逼近:approximation 原函数:primitive function 反导数:antiderivative 不定积分:indefinite integral 被积函数:integrand 任意常数:arbitrary constant 积分常数:integral constant 积分公式:integral formula 逆过程:reverse process 替换法积分:integration by substitution 分部积分:integration by parts 连续函数:conti

26、nuous function 可微函数:differentiable function3.(1)Peoples researches on the tangent line to a curve and instantaneous velocity of moving body leads to the generation of the concept of a derivative.(3)The tangent problem provides a visual interpretation for the derivative, which leads people to define

27、the derivative as the limit of a difference quotient.(5)If f(x) has a first derivative f(x) in an interval, then, it can be used to define the differential of f(x).4.(1)导数的例子例 1 一个常函数的导数 设 f是一个常值函数,比如说 f(x)=c 对于所有的 x成立,差商是 由于对有所有 h!=0。此商为 0,它的极限 f(x)对于每一个 x也是 0.换句话说,一个常数函数在各处有零导数。例 2 一个线性函数的导数 设 f是一

28、个线性函数,比如说 f(x)=mx+b对于所有的实数 x成立。如果 h!=0,我们有由于当 h趋近于 0时,差商不改变,我们得出结论 f(x)=m对于每一个 x成立。因此一个线性函数的导数是一个常函数。(3)方向导数 我们现在介绍一个偏导数的自然推广。在定义中,差商的分子用于涉及到 f(x,y)在和两点的值。当趋近于 0时,第一个点沿着直线 y=y0趋近于后面的点。对于一个点沿直线 x=x0趋近于。(5)相差一个常数的反导数 如果 F是连续函数 f的反导数,那么任何其他的反导数一定有形式 G(x)=F(x)+C,这就说明同一个函数的两个反导数一个相差积分常数值,此值可以为 0.2.112. 定

29、积分:definite integral 不变性:invariance 可加性:additivity 唯一性:uniqueness 阶梯函数:step function 非负函数:nonnegative function 放大:expansion 压缩:contraction 建立:establish 比较:comparison 成立:hold 严格不等式:strict inequality 直立柱子:right cylindrical solid 子区间:subinterval 旋转体:solid of revolution 圆柱形的:cylindrical 单调的:monotonic 可测

30、的:measurable 可积的:integrable 全等的:congruent 截面的:cross-sectional 凸的:convex 有效的:valid3.(1)The definite integral satisfies the linearity with respect to the integrand,the additivity with respect to the interval of integration and invariance under translation.(3)Step functions or other simple functions ca

31、n be used to approximate integrand above and below to find the approximate value of the integral of the function discussed.(5)Let a function y=f(x) be nonnegative on the intervala,b. Then the solid obtained by revolving ordinate set of this function about the x-axis, is a solid of revolution, whose

32、volume can be computed by the integral of the function over the intervala,b.4.(1)微积分学的基本定理详细阐述了两种核心运算之间的关系微分和积分。定理的第一部分,有时被称为微积分第一基本定理,表明一个不定积分可以由一个微分法反转而来,第一部分也很重要因为它保证了对于连续函数反导数的存在性.第二部分,有时被称为微积分第二基本定理,允许人们通过使用它的无穷多个反导数的任意一个来计算一个函数的定积分.订立的这一部分有着不可估量的实际应用,因为它显著的简化定积分的计算.(3)推论 基本定理经常被用于计算一个函数 f的定积分,

33、它的一个反导数 F已知.详细的说,如果 f是一个a,b上的实值连续函数,F 是 f在a,b上的一个反导数,那么。推论假定整个区间上的连续性,这个定理在下面的定理中被稍微加强了。2.122.点状收敛:converge pointwise 绝对收敛:converge absolutely 一致收敛的:uniformly convergent 一致收敛:converge uniformly WM 判别法:weierstrass M-test 比较判别法: geometric series 幂级数:power series 收敛圆:circle of convergence 收敛半径:radius o

34、f convergence 上界:upper bound 上有界:bounded above 最小上界:least upper bound 相邻项:consecutive terms 空集:empty set 在内部:interior to 控制:dominate 操作:manipulate3.(1)A sequence of functions which converges uniformly on an open interval(a,b) must converge at every point in the interval, but a sequence of functions

35、which converges pointwise on an inteval(a,b) may not converge uniformly on the interval.(3)Any power series converge at least at the point z=0, if it converges in the entire complex plane, then its radius of convergence is positive infinite.(5)The general term of a convergent series always approache

36、s zero, from which follows a necessary condition for a series to converge. But it is not sufficient because a series whose general term approaches zero may not converge.4.(1)这个特殊幂级数在收敛圆的每个边界点处都发散,因为如果|z|=r,则通项有绝对值 n。(3)一个级数被称为绝对收敛的如果收敛,如果收敛而发散,则它被称为条件收敛的。(5)现在我们考虑各项在实直线或在复平面上具有共同定义域 S的实值或复值函数的序列fn,假定 fn在 S上一致收敛于一个函数 f,如果一个 fn在 S上的 p点处连续,则极限函数 f也在 p上连续。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。