精选优质文档-倾情为你奉上微分中值定理证明中辅助函数的构造1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的换成;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数例1:证明柯西中值定理分析:在柯西中值定理的结论中令,得,先变形为再两边同时积分得,令,有故为所求辅助函数例2:若,是使得的实数证明方程在(0,1)内至少有一实根证:由于并且这一积分结果与题设条件和要证明的结论有联系,所以设(取),则1)在0,1上连续2)在(0,1)内可导3)=0, 故满足罗尔定理的条件,由罗尔定理,存在使,即亦即 这说明方程在(0,1)内至少有实根 2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数 例3:设在1,2上连续,在(1,2)内可导,证明存在使分析:结论变形为,不易凑成