精选优质文档-倾情为你奉上专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x,y之间的关系或F(x,y)0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用x,y的代数式表示x0,y0,再将x0,y0代入已知曲线得要求的轨迹方程1一个区别“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的前者只须求出轨迹的方程,标出变量x,y的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据2双向检验求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响考向一 直接法求轨迹方程【例1】已知动点P(x,y)与两定点