精选优质文档-倾情为你奉上例谈数形结合思想方法在初中数学教学中的应用大理州宾川县教育局教研室 张 辉(联系电话 邮编)数学研究的对象,是现实世界中的数量关系(简称“数” ) 和空间形式(简称“形” ),而“数”和“形”是相互联系、相互渗透、相互转化的,正如著名数学家华罗庚所说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休。”数形结合,主要指的是数与形之间的一一对应关系。数形结合思想方法就是把抽象严谨的数学语言、数量关系与直观表意的几何图形、位置关系结合起来,通过“以形助数”,给抽象的问题以形象化的原型,从而给人们以形象思维的启示;反过来,“以数助形”,则对直观问题以数理推证和精确刻划,从而起到把握数学本质的目的。在初中数学教学中,数形结合的思想方法应用广泛,常见的有判断有理数大小的关系、代数式变换、解方程及解不等式、列方程解应用题,函数及其图像、平面几何问题、数据统计及简单的三角函数等方面。一、数形结合在有理数中的应用例1:有理数a、b在数轴上的位置如图1所示,则a与b的大小关系是( )Aa