精选优质文档-倾情为你奉上线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】 r(A)= r n ,若AX = 0(A为矩阵)的一组解为 ,且满足:(1) 线性无关;(2) AX = 0 的)任一解都可由这组解线性表示.则称为AX = 0的基础解系. 称为AX = 0的通解 。其中k1,k2, kn-r为任意常数).齐次线性方程组的关键问题就是求通解, 而求通解的关键问题是求基础解系. 【定理】 若齐次线性方程组AX = 0有解,则(1) 若齐次线性方程组AX = 0(A为矩阵)满足,则只有零解;(2) 齐次线性方程组有非零解的充要条件是.(注:当时,齐次线性方程组有非零解的充要条件是它的系数行列式.)注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于. 2、非齐次线性方程组的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组所对应的同解方程组。由上述定理可知,若是系数矩阵的行数(也即方程的个数),是未知量的个数,则有:(1) 当时,此时齐次线性方程