精选优质文档-倾情为你奉上专题二 直线与圆锥曲线的综合问题第一课时一.知识体系小结3解决直线与圆锥曲线问题的通法:(1)设方程及点的坐标;(2)联立直线方程与曲线方程得方程组,消元得方程;(3)应用韦达定理及判别式;(4)结合已知、中点坐标公式、斜率公式及弦长公式求解二. 例题剖析1.概念性质解析:由椭圆的定义可知:|F1A|+|F2A|=2a=10,|F1B|+|F2B|=2a=10,所以|AB|=20-|F2A|-|F2B|=8.小结: 1对椭圆、双曲线,已知曲线上的点与一个焦点的距离时,常作辅助线:连结它与另一个焦点,考虑使用定义解题 2要熟悉焦点三角形的性质及研究方法 2.椭圆方程【例3】如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率小结:抛物线焦点弦的性质:直线l过抛