精选优质文档-倾情为你奉上2017届高考备考资料圆锥曲线的离心率圆锥曲线求离心率范围问题一致是近几年高考的重点和热点,尤其是新课标卷在选择题中出现的次数比较频繁。下面本文将对求离心率问题的常见求法进行较为系统的总结,希望能对同学们有所帮助。一.直接利用条件寻找的关系求解例1设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A) (B) (C) (D)解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,则一个焦点为 一条渐近线斜率为:,直线的斜率为:, ,解得.例2 斜率为2的直线过中心在原点且焦点在轴上的双曲线的右焦点,与双曲线的两个交点分别在左、右两支上,则双曲线的离心率的取值范围是( ) A. B. C. D.解析 设双曲线的方程为,右焦点的坐标为,直线的方程为.由,得.根据题意得,.小结 将直线的方程与双曲线的方程联立后,使判别式大于零,同时注意.二、利用圆锥曲线的第一定义或第二定义求解例1设