精选优质文档-倾情为你奉上第十一讲 解析几何范围最值问题解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.一、几何法求最值【例1】 抛物线的顶点O在坐标原点,焦点在y轴负半轴上,过点M(0,2)作直线l与抛物线相交于A,B两点,且满足(4,12)(1)求直线l和抛物线的方程;(2)当抛物线上一动点P从点A运动到点B时,求ABP面积的最大值满分解答(1)根据题意可设直线l的方程为ykx2,抛物线方程为x22py(p0)由得x22pkx4p0设点A(x1,y1),B(x2,y2),则x1x22pk,y1y2k(x1x2)42pk24.所以(4,12),所以解得故直线l的方程为y2x2,抛物线方程为x2