1、Comment U1: 如:数对(3,2 )表示第三列,第二行。Comment U2: (有一个数不确定,不能确定一个点)Comment U3: “分数乘整数”指的是第二个因数必须是整数,不能是分数。Comment U4: 注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)Comment U5: (整数和分母约分)Comment U6: (整数千万不能与分母相乘,计算结果必须是最简分数)Comment U7: (分子乘分子,分母乘分母)Comment U8: 什么是带分数?像Comment U9: (约分后分子和分母必须不再含有公因数,这样计算后的结果才是最
2、简单分数).六年级上册数学知识点第一单元 位置1、例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。(1)在平面直角坐标系中 X轴上的坐标表示列,y 轴上的坐标表示行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。( 列 , 行 ) 竖排叫列 横排叫行(从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。3、两点间的距离与基准点(0,0)的没有关系,基准点不同数对就不同,两点间距离不变。第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例
3、如: 537表示: 求 7个 53的和是多少? 或表示: 53的 7倍是多少?例如: 5表示求 5个 的和是多少? 62、一个数乘分数的意义就是求一个数的几分之几是多少。例:31表示: 求 的 6是多少? 9 1表示: 求 9的 6是多少? A 1表示: 求 A的 6是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。(1)为了计算简便能约分的可先约分再计算。(2)约分是用整数和下面的分母约掉最大公因数。2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。(2)分数化简的方法是
4、:分子、分母同时除以它们的最大公因数。(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0 除外),分数的大小不变。(三)积与因数的关系:一个数(0 除外)乘大于 1的数,积大于这个数。ab=c,当 b 1时,ca.一个数(0 除外)乘小于 1的数,积小于这个数。ab=c,当 b 1时,ca (a0 b0)除以等于 1的数,商等于被除数:ab=c 当 b=1时,c=a二、分数除法混合运算1、运算顺序:连除;混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。四
5、、比:两个数相除也叫两个数的比1、比式中,比号()前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。2、例:1220= 01220=53=0.6 1220 读作:12 比 203、比的基本性质:比的前项和后项同时乘以或除以相同的数(0 除外),比值不变。3、化简比:化简之后结果还是一个比,不是一个数。(1)用比的前项和后项同时除以它们的最大公约数。(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。4、求比值:把比号写成除号再计算,结果是一个
6、数(或分数),相当于商,不是比。5、比和除法、分数的区别:五、分数除法和比的应用除法 被除数 除号() 除数(不能为 0) 商不变性质 除法是一种运算分数 分子 分数线() 分母(不能为 0) 分数的基本性质 分数是一个数比 前项 比号() 后项(不能为 0) 比的基本性质 比表示两个数的关系后项前项前项 后项比号 比值=比 字 后 面 的 量乙 )甲(比 后差前项 后项比值Comment U25: (建议列方程答)Comment U26: (“是”字相当“”号,乙是单位“1”)Comment U27: (“比”字后面的量乙是单位“1”的量)Comment U28: 已知“1”用乘法Comme
7、nt U29: 多是“+”少是“”Comment U30: 求“1”用除法Comment U31: 多是“+”少是“”Comment U32: 求“1”用除法Comment U33: 多是“+”少是“”Comment U34: 两个量的关系画两条线段图,部分和整体的关系画一条线段图。.1、已知单位“1”的量用乘法。例:甲是乙的 53,乙是 25,求甲是多少? 甲=乙 53(15 =9)2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是 15,求乙是多少? 甲=乙 ( 15 =25)3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几? 甲乙几分之几 例:甲是 15的 53,求甲是
8、多少? 15 539 例:9 是乙的 ,求乙是多少? 9 15例:9 是 15的几分之几? 915(2)甲比乙多(少)几分之几? 甲乙两数的差乙= 乙差例:9 比 15少几分之几? (15-9)15 15962例: 15 比 9少几分之几? (15-9)9 3例:甲比 15少 52,求甲是多少? 15(1 )9例:9 比乙少 ,求乙是多少? 9(1- 2)9 15)例:15 比乙多 3,求乙是多少? 15(1+ 3) 15 59)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。例如:已知甲乙的和是 56,甲、乙的比 35,求甲、乙分别是多少?方法一:56(3+5)7 甲:3721
9、乙:5735方法二:甲:56 5321 乙:56 5335例如:已知甲是 21,甲、乙的比 35,求乙是多少?方法一:2137 乙:5735方法二:甲乙的和 21 56 乙:56 35方法二:甲乙 5 乙甲 21 535 5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。(2)分析数量关系。(3)找等量关系。 (4)列方程。第四单元 圆一、圆心 o:圆中心的点叫做圆心圆心一般用字母 O表示圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。半径 r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。直径 d
10、: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。Comment U35: 3.14 ,3.14Comment U36: 圆周率 = 直 径周 长=周长直径3.14Comment U37: 圆周率 是一个无限不循环小数,3.14 是近似值。Comment U38: r r2Comment U39: 百分数不能带单位。 .同圆或等圆内直径是半径的 2倍:d=2r 或 r=d2= 21d=d4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。5、圆是轴对称图形:如果一个图形沿着一条直
11、线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角 有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形 有四条对称轴的图形:正方形有无数条对称轴的图形:圆,圆环6、画圆:(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母 C表示。1、圆的周长总是直径的三倍多一些。2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母 表示。 圆的周长(c)=直径(d)圆周率() 周长公式: c=d, c=2r3、周长的变化的规律
12、:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。4、半圆周长=圆周长一半+直径=2r2+d=r+d三、圆的面积 s1、圆的面积 = rr = r 2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。4、环形面积 = 大圆面积 小圆面积=R - r=(R - r)扇形面积 = r 360n(n 表示扇形圆心角的度数)5、
13、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。跑道的周长=2r+两条直跑道的和6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是 47、常用数据3.14 26.28 39.42 412.56 515.7 618.84 721.98 825.12第五单元、百分数一、百分数的意义:表示一个数是另一个数的百分之几。百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率。 1、百分数和分数的区别和联系:Comment U40: 一般来讲,出勤率、成活率、合格率、正确率能达到 100%,出米率、出油率达不到 100%,完成率、增
14、长了百分之几等可以超过 100%。一般出粉率在 70、80%,出油率在30、40%。Comment U41: 国债和教育储蓄的利息不纳税.(1)联系:都可以用来表示两个量的倍比关系。(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只以是整数。2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。(2)小数化百分数:小数点向右移动两位,添上“%”。(3)百分数化分数:先把百分数写成分母是 100的分数,然后再化简成最简分数。(4)分数化百分数:分子除以分母得到
15、小数,(除不尽的保留三位小数)然后化成百分数。(5)小数 化 分数:把小数成分母是 10、100、1000 等的分数再化简。(6)分数 化 小数:分子除以分母。二、百分数应用题1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。求甲比乙多百分之几 (甲-乙)乙 求乙比甲少百分之几 (甲-乙)甲3、 求一个数的百分之几是多少 一个数(单位“1”) 百分率4、 已知一个数的百分之几是多少,求这个数 部分量百分
16、率=一个数(单位“1”)5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十6、 纳税: 缴纳的税款叫做应纳税额。 (应纳税额)(总收入)=(税率) (应纳税额)=(总收入)(税率)7、 利率(1)存入银行的钱叫做本金。 (2)取款时银行多支付的钱叫做利息。 (3)利息与本金的比值叫做利率。利息=本金利率时间 税后利息=利息-利息的应纳税额=利息-利息5%8、百分数应用题型分类(1)求甲是乙的百分之几 (甲乙)100% = 乙甲100% = 百分之几(2)求甲比乙多(少)百分之几 比 字 后 面差100% = 乙差100%第六单元、统计常用统计图的优点:(1)条形统计图直观显示每个数
17、量的多少。折扣 成数 百分之几 小数 是原价的 比原价降低七折 七成 百分之七十 0.7 70 30八折 八成 百分之八十 0.8 80 20九五折 九成五 百分之九十五 0.95 95 5Comment U42: 假设都是鸡,共有几只脚2. 已知总的脚的只数比假设的鸡的脚的只数多多少3. 一只兔的脚的只数比一只鸡的脚的只数多多少4. =兔的只数5. 鸡兔的总只数-兔的只数=鸡的只数Comment U43: 假设都是大和尚,应吃多少个馒头Comment U44: 已知总的馒头个数比假设都是大和尚的个数多多少Comment U45: 大和尚比小和尚多吃多少个馒头Comment U46: =小和尚
18、的人数Comment U47: 总的人数-小和尚的人数=大和尚的人数Comment U48: 3个小和尚与 1个大和尚编为一组Comment U49: 可以分成几组Comment U50: 每组有 1个大和尚Comment U51: 每组有 3个小和尚Comment U52: 总的人数-大和尚的人数=小和尚的人数Comment U53: 解法:甲数除以乙数Comment U54: 首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。Comment U55: 单位“1”分率=对应数量Comment U56: 对
19、应数量对应分率=单位“1”.(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。(3)扇形统计图直观显示部分和总量的关系。第七单元、数学广角一、和尚分馒头100个和尚吃 100个馒头,大和尚一人吃 3个,小和尚三人吃一个。大小和尚各多少人?鸡兔同笼法:(1)假设 100人全是大和尚,应吃馒头多少个? 3100=300(个)(2)这样多吃了几个呢? 300100=200(个)(3)为什么多吃了 200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头? 3 31=8(个)(4)每个小和尚多算了 8/3个馒头,一共多算了 200个,所以小和尚有
20、:小和尚:200 75(人) 大和尚:10075 25(人)分组法:由于大和尚一人分 3只馒头,小和尚 3人分一只馒头。我们可以把 3个小和尚与 1个大和尚编为一组,这样每组 4个和尚刚好分 4个馒头,那么 100个和尚总共分为 100(3+1)=25 组,因为每组有 1个大和尚,所以有 25个大和尚;又因为每组有 3个小和尚,所以有 25375 个小和尚。列式就是: 100(3+1)=25(组)大和尚:251=25(人)小和尚:253=75(人)或 100-25=75(人)三、整数、分数、百分数应用题结构类型(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。例:校园里有杨树 40棵,柳树有 50棵,杨树的棵树占柳树的百分之几?(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。求一个数的几倍(几分之几或百分之几)是多少用乘法,例:六年级有学生 180人,五年级的学生人数是六年级人数的 。五年级有学生多少人?180 =15056 56(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。例:育红小学六年级男生有 120人,占参加兴趣活动小组人数的 . 六年级参加兴趣活动小组人数共有学35生多少人? 120 =200(人)35