精选优质文档-倾情为你奉上 导数中的双变量任意、存在恒成立问题解决方法:转化为最值问题处理类型 一:若,恒成立 .基本思想是:函数的任一函数值均大于的任一函数值, 故只需即可. 几何解释如图一.例1、 已知,若对, 使得成立,求实数的取值范围.【变式训练1】已知函数,若,不等式恒成立,求实数的取值范围.类型 二:若,恒成立 .基本思想是:函数的某些函数值大于的某些函数值, 只要求有这样的函数值,不要求所有的函数值.故只需即可. 几何解释如图二.例2、 已知,设函数, 若在上存在,使成立,求实数取值范围.【变式训练2】已知函数,.(1) 求函数的单调区间; (2)若函数在(,)上是减函数,求实数的最小值;(3)若存在,使得成立,求实数取值范围.类型 三:若,恒成立 .基本思想是:函数的任一函数值大于的某些函数值,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。