1、1-1 绘出下列各信号的波形。(1) u (t ) u (t T ) sin((3) ( 2 e )u (t ) ;解:t4t) ;T(2) u ( t ) 2u (t T ) + u (t 2T )sin((4) e cos(10t )u ( t 1) u (t 2)t4t)T(1)u (t ) u (t T ) sin(4 t)T(2)u ( t ) 2u (t T ) + u (t 2T )sin( 4 t)T(3) ( 2 e )u (t ) ;t (4) e cos(10t )u ( t 1) u (t 2)t1-2 应用冲激信号的性质,求下列表达式的值。(1)(3)(5)(7)f
2、(t t0 ) (t )dt (2) f (t0 t ) (t )dt ( t t 0 )u ( t t0)dt2(4)(6) (t t0 )u(t 2t0 )dt(t + sin t ) (t 2( e t + t ) (t + 2)dt 6 )dte jt (t ) (t t0 )dt(t + cos t ) (t 1)dt(8) (3t210+ 1) (t )dt3k t(9) (10) ek = (t k )dt解: (1) f ( t0 ) (2) f ( t0 ) 1 t0 01(3) u ( t0 ) = t0 = 02 0 t0 0(7) 1 e jwt0(5) e 2 2 (
3、6) 6+ 12(8)1 (9)0 (10) e 3 kk =021-3 已知 f (t ) 的波形如题图 1-12 所示,试画出下列函数的波形图。(2) f (t / 3)u (3 t )(1) f (3t ) df (t )(3)dt(4) tf ( )df (t )10 1 3 t解:(1) f (3t ) (2) f (t / 3)u (3 t )(3)df (t )dt (4) tf ( )d1-4 判断下列系统是否为线性的、时不变的、因果的?(1) y ( t ) = x ( t )u ( t )(4) y ( t ) =(2) y (t ) = x ( 2t ) (3) y (t
4、 ) = x (t )2t x ( z )dz (5) y (t ) = x (t 2 ) + x (2 t ) (6) y ( t ) = cos(3t )x(t )(7) y (t ) = 0,t00,x(t ) 0 (8) y (t ) = (9)x(t ) + x(t 2), t 0x(t ) + x(t 2 ), x(t ) 0y (t ) = x t( 3)(2)线性,时变,非因果。(4)线性,时不变,因果。(6)线性,时变,因果。(8)非线性,时不变,因果。解:(1)线性,时变,因果。(3)非线性,时不变,因果。(5)线性,时变,非因果。(7)线性,时不变,因果。(9)线性,时变
5、,因果。1-5 有 一 LTI 系 统 , 当 激 励 x1 (t ) = u(t ) 时 , 响 应 y1 ( t ) = 6et u(t ) , 试 求 当 激 励x2 (t ) = 3tu(t ) + 2 (t ) 时,响应 y2 (t ) 的表示式。(假定起始时刻系统无储能。)解: t u (t ) = d u (t ) ,该系统为 LTI 系统。dxt6故在 t u (t ) 激励下的响应 y1 (t ) = 6 e t u (t ) dt = (e t 1) 2t u (t )dt , (t ) = d(6e t u (t ) = 6 e t u (t ) + 6 (t )dx18 18 t在 3tu (t ) + 2 (t ) 激励下的响应 y ( t ) = e 12 e t u (t ) + 12 (t ) 。2在 (t ) 激励下的响应 y2 (t ) =