精选优质文档-倾情为你奉上跨滑轮绳连接物体系的牛顿第二定律一、问题的缘起AB【例1】如图所示,物体A和B由跨过轻质滑轮的轻绳连接后竖直悬挂,然后由静止释放,已知A的质量为m、B的质量为M,且Mm,不计一切摩擦,求A上升的加速度。本题常见两种解法,如下:解法一:设绳中张力为FT,则由牛顿第二定律,对A,有:FTmg=maA,对B,有MgFT=MaB,其中:aA=aB,联立解得:。解法二:选A、B、轻绳系统为研究对象,由系统的牛顿第二定律,有:Mgmg=(M+m)a,解得:。【质疑】按常规理解,第二种解法存在一些明显的问题:等式左边,两个重力方向均向下,按矢量合成规则,怎么能够相减?等式右边,aA、aB两个加速度方向相反,MaB和maA怎么能够相加?而且,真的选A、B、轻绳系统为研究对象,其受力还有滑轮对整体向上的弹力F,且系统的牛顿第二定律的方程应为:Mg+mgF=Ma-ma。【解释】当然,我们可以认为,解法二的方程实际上是解法一两个方程联立得到的一个数学结论式,没有物理意义。可是,列解法二方程时,我们的解释往往是:我们研究的