精选优质文档-倾情为你奉上多元函数、多元向量值函数f(X) F(X)多元函数的切平面、全微分、偏导有多元函数f(X),若存在向量A=(a1,a2,an)使得f(X)-f(X0)-A(X-X0)=o(|X-X0|),则称g(X)=A(X-X0)是f在X0处的切平面df=AdX=a1dx1+a2dx2+andxn是f的全微分bk=(f)/(xk)是将X的其他分量视为常数时f的导数,称为f的偏微分可以证明若A存在,ak=bk=f/ xkNabla算子=(/x1, /xn)A=Grad(f)=A称为f的梯度, (fg) = gf+fg若有单位向量e=(cos1, cos2, cosn),则称A.e是f沿e方向的方向导数,A.e=f/l 其中l与e平行若f在X0可微:X0处f各一阶偏导存在X0处f有梯度X0处f连续X0处f的各方向导数均存在若f在X0处各一阶偏导函数连续,则f在X0可微A= f是向量值函数,可以观察,e与A平行时,f的方向导数最大,且大小A.e=|