1、绝密启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。考试用时120分钟。注意事项:1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上
2、要求作答无效。4考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合 A=x|x1000的 最 小 偶 数 n, 那 么 在 和 两 个 空 白 框 中 , 可 以 分 别 填入A A1 000和 n=n+1 B A1 000和 n=n+2 C A1 000和 n=n+1 D A1 000和 n=n+29已知曲线 C1: y=cos x, C2: y=sin (2x+ 23),则下面结论正确的是A把 C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 6
3、个单位长度,得到曲线 C2B把 C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C2C把 C1上各点的横坐标缩短到原来的 12倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,得到曲线 C2D把 C1上各点的横坐标缩短到原来的 12倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C210已知 F为抛物线 C: y2=4x的焦点,过 F作两条互相垂直的直线 l1, l2,直线 l1与 C交于 A、 B两点,直线 l2与 C交于 D、 E两点,则| AB|+|DE|的最小值为A16 B14 C12 D1011设 xyz为正数,
4、且 235xyz,则A2 x100且 该 数 列 的 前 N项 和 为 2的 整 数幂 。 那 么 该 款 软 件 的 激 活 码 是A440 B330 C220 D110二、填空题:本题共4小题,每小题5分,共20分。13已知向量 a, b的夹角为60,| a|=2,| b|=1,则| a +2 b |= .14设 x, y满足约束条件210xy,则 32zxy的最小值为 .15已知双曲线 C:21xyab( a0, b0)的右顶点为 A,以 A为圆心, b为半径做圆 A,圆 A与双曲线 C的一条渐近线交于 M、 N两点。若 MAN=60,则 C的离心率为_。16如图,圆形纸片的圆心为 O,
5、半径为5 cm,该纸片上的等边三角形 ABC的中心为 O。 D、 E、 F为圆 O上的点, DBC, ECA, FAB分别是以 BC, CA, AB为底边的等腰三角形。沿虚线剪开后,分别以 BC, CA, AB为折痕折起 DBC, ECA, FAB,使得 D、 E、 F重合,得到三棱锥。当 ABC的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分) ABC的内角 A, B, C的对边分别为 a, b,
6、 c,已知 ABC的面积为23sinaA(1)求sin BsinC;(2)若6cos BcosC=1, a=3,求 ABC的周长.18.(12分)如图,在四棱锥 P-ABCD中, AB/CD,且 90BAPCD.(1)证明:平面 PAB平面 PAD;(2)若 PA=PD=AB=DC, 90APD,求二面角 A-PB-C的余弦值.19(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N(1)假设生产状态正常,记 X表示一天内抽取的16个零件中其尺寸
7、在 (3,)之外的零件数,求 ()PX及 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在 (3,)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查( )试说明上述监控生产过程方法的合理性;( )下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得169.7ix,1616222()()0.1i iisxx,其中 ix为抽取的第 i个零件的尺寸, ,2用样本平均数 x作为 的估计
8、值 ,用样本标准差 s作为 的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除 (3,)之外的数据,用剩下的数据估计 和 (精确到0.01)附:若随机变量 Z服从正态分布2(,)N,则 (3)0.97 4PZ,160.97 4.59 2, 0.8.920.(12分)已知椭圆 C:2=1xyab( ab0),四点 P1(1,1), P2(0,1), P3(1, 3), P4(1, 3)中恰有三点在椭圆 C上.(1)求 C的方程;(2)设直线 l不经过 P2点且与 C相交于 A, B两点。若直线 P2A与直线 P2B的斜率的和为1,证明: l过定点.21.(12分)已知函数 )fx(
9、ae2x+(a2) e x x.(1)讨论 (的单调性;(2)若 )f有两个零点,求 a的取值范围.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系 xOy中,曲线 C的参数方程为 3cos,inxy( 为参数),直线 l的参数方程为4,1xaty( 为 参 数 ).(1)若 a=1,求 C与 l的交点坐标;(2)若 C上的点到 l的距离的最大值为 17,求 a.23选修45:不等式选讲(10分)已知函数 f( x)= x2+ax+4, g(x)= x+1+ x1.(1)当 a=1时,求不等式 f
10、( x) g( x)的解集;(2)若不等式 f( x) g( x)的解集包含1,1,求 a的取值范围.绝密启封并使用完毕前 试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至3页,第卷3至5页。2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1) 设复数z满足 =i,则|z|=1+z(A)1 (B) (C) (
11、D)223(2)sin20cos10-con160sin10=(A) (B) (C) (D)32212(3)设命题P: n N, ,则 P为n(A) n N, (B) n N, 22n(C) n N, (D) n N, =2n2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432 (C)0.36 (D)0.312(5)已知 是双曲线 上的一点, 是 上的两个焦点,若0(,)Mxy2:1xy12,FC,则 的取值范围是12FA0(A)(- , ) (B)(- , )3
12、36(C)( , ) (D)( , )22(6)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛 B.22斛 C.36斛 D.66斛(7)设D为 ABC所在平面内一点 ,则A3BCD(A) (B) 143A143ABC(C) (D) (8)函数 的部分图像如图所示,则 的单调递减区间为()cos)fx()fx(A
13、) (B) 13,4kkZ13(2,4kkZ(C) (D) 13(,),4kkZ13(2,),4kkZ(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10 ) 的展开式中, 的系数为25()xy52xy(A)10 (B)20 (C)30 (D)60(11)圆柱被一个平面截去一部分后与半球(半径为 )组成一个几何体,该几何体三视图中的正视图和俯r视图如图所示。若该几何体的表面积为16 + 20 ,则 =(A)1 (B)2 (C)4 (D)812.设函数 ,其中 ,若存在唯一的整数 ,使得 ,则 的取值()1)xfea10x0()fxa范围是(
14、 )A. B. C. D. 3,)2e3,)24e3,)24e3,)2e第II卷本卷包括必考题和选考题两部分。第(13)题第(21)题为必考题,每个试题考生都必须作答。第(22)题第(24)题未选考题,考生根据要求作答。二、填空题:本大题共3小题,每小题5分(13)若函数 为偶函数,则 2()ln()fxaxa(14)一个圆经过椭圆 的三个顶点,且圆心在 轴上,则该圆的标准方程为 。2164yx(15)若 满足约束条件 则 的最大值为 .,xy0,xyyx(16)在平面四边形 中,A=B=C=75,BC=2,则AB的取值范围是 ABCD三.解答题:解答应写出文字说明,证明过程或演算步骤。(17
15、)(本小题满分12分)Sn为数列an的前n项和.已知an0,()求an的通项公式:()设 ,求数列 的前n项和(18)如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC。(1)证明:平面AEC平面AFC(2)求直线AE与直线CF所成角的余弦值(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值。 xyw(x 1- ) 2(w 1- ) 2x(x 1-) (y- )y(w 1-x)(y- )y46.6 56.3 6.8 289.8 1.6 1469 108.8表中w 1 = 1, , =x18xw(1) 根据散点图判断,y=a+bx与y=c+d 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据()的结果回答下列问题: