精选优质文档-倾情为你奉上数学归纳法1数学归纳法的概念及基本步骤数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法它的基本步骤是:(1)验证:nn0 时,命题成立;(2)在假设当nk(kn0)时命题成立 的前提下,推出当nk1时,命题成立根据(1)(2)可以断定命题对一切正整数n都成立 2归纳推理与数学归纳法的关系数学上,在归纳出结论后,还需给出严格证明在学习和使用数学归纳法时,需要特别注意:(1)用数学归纳法证明的对象是与正整数n有关 的命题;(2)在用数学归纳法证明中,两个基本步骤缺一不可 1用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1.2当证明从k到k1时,所证明的式子不一定只增加一项;其次,在证明命题对nk1成立时,必须运用命题对nk成立的归纳假设步骤二中,在由k到k1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论关键是明确nk1时证明的目标,充分考虑由nk到nk1时命题形式之间的区别与联系,若实在凑不出结