精选优质文档-倾情为你奉上1拉氏变换的定义 若时间函数 f(t) 在 t 0 有定义,则 f(t) 的拉普拉斯变换(简称拉氏变换)为原像像2拉普拉斯反变换 ,可表示为:f(t) =L-1F(s)1.表A-1 拉氏变换的基本性质1线性定理齐次性叠加性2微分定理一般形式初始条件为0时3积分定理一般形式初始条件为0时4延迟定理(或称域平移定理)5衰减定理(或称域平移定理)6终值定理7初值定理8卷积定理2表A-2 常用函数的拉氏变换和z变换表序号 时间函数e(t)拉氏变换E(s)Z变换E(z)1(t)11 2345t6 78910
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。