精选优质文档-倾情为你奉上单纯行法第一题和第二题采用了单纯形法进行解决,单纯形法的理论依据是:线形规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。单纯形法的一般解题步骤可归纳如下:1.把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。2.若基本可行解不存在,即约束条件有矛盾,则问题无解。3.若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。4.按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。5.若迭代过程中发现问题的目标函数值无界,则终止迭代。用单纯形法求解线性