第九节圆锥曲线的综合问题A组基础题组1.(2015课标,20,12分)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.2.(2016山西太原模拟)已知椭圆M:x2a2+y23=1(a0)的一个焦点为F(-1,0),左,右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45时,求线段CD的长;(2)记ABD与ABC的面积分别为S1和S2,求|S1-S2|的最大值.3.(2016吉林长春模拟)设F1、F2分别是椭圆E:x24+y2b2=1(b0)的左、右焦点,若P是该椭圆上的一个动点,且的最大值为1.(1)求椭圆E的方程;(2)设直线l:x=ky-1与椭圆E交于不同的两点A、B,且AOB为锐角(O为坐标原点),求k的取值范围.B组提升题组
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。