指数与对数的运算要点 要点 疑点 疑点 考点 考点 1.整数指数幂的运算性质 (1)a m a n =a m+n (m,n Z) (2)a m a n =a m-n (a0,m,n Z) (3)(a m )n=a mn (m,n Z) (4)(ab) n =a n b n (n Z) 2.根式 一般地,如果一个数的n次方等于a(n 1,且 n N * ),那么这个数叫做a的n次方根也就是,若 x n =a,则x叫做a的n次方根,其中n1,且n N * 式子n a 叫做根式,这里n叫做根指数,a叫做被开方 数3.根式的性质 (1)当n 为 奇数时 ,正数的n 次方根是一个正数,负 数的n 次 方根是一个负 数,这时 ,a的n 次方根用符号 表示. (2)当n 为 偶数时 ,正数的n 次方根有两个,它们 互为 相反 数,这时 ,正数的正的n 次方根用符号 表示,负 的n 次方根用符号 表示.正负 两个n 次方根可以合写为 (3) (4)当n为 奇数时 , ;当n为 偶数时 , (5)负 数没有偶次方根 (6)零的任何次方根都是零 4. 4. 分数指数幂的意义 分数指数幂的意义 5.有理数指