第四篇 系 统 辨 识 概 述 在实际工程问题中,为了设计和分析一个控制系统,或 者为了分析一个对象的动态性质,都必须知道系统或对象的 数学模型及其参数。在前面讨论线性系统理论、最优控制理 论和最优估计理论时,假定系统的数学模型是已知的。显然 ,对于自动控制系统的设计研究工作来说,建立对象的数学 模型是必不可少的。有的系统的数学模型可用理论分析方法(解析法)推导出 来,例如飞行器运动的数学模型,一般可根据力学原理较 准确地推导出来。但是,当考虑飞行器运动模型的参数随 飞行高度和飞行速度变化时,为了实现对飞行器运动的自 适应控制,就要不断估计飞行器在飞行过程中的模型参数 。 有些控制对象,如化学生产过程,由于其复杂性,很难用理 论分析方法推导数学模型。只能知道数学模型的一般形式及 其部分参数,有时甚至连数学模型的形式也不知道。因此提 出怎样确定系统的数学模型及其参数的问题,即所谓的系统 辨识问题。既然有的系统很难用理论分析方法推导出数学模 型,只有求助于试验方法。通过试验或系统的运行,得到有关系统模型的信息,经 过计算处理,可得系统的数学模型。粗略地讲,系统辨 识就是通过试验或运行所得数