1、摘 要本次课程设计以基于 MATLAB 的 BPSK 调制仿真及性能分析为题目,其中 BPSK(Binary Phase Shift Keying),即二进制相移键控,是一种数字带通调制方法。此次课设中着重介绍了算法的实现,并采用 MATLAB 程序仿真测试了 BPSK 过程中双极性不归零的产生、载波的形成、BPSK 的模拟调制、信号通过 AWGN 信道、带通滤波器的设计、低通滤波器的设计、抽样判决、载波的恢复、而且建立蒙特卡洛仿真模型统计系统误码率,并与理论误码率曲线进行比较。调制过程中采用模拟调制方法得到调制信号,并进行了信号的频谱分析;调制信号通过信道时加入了高斯白噪声;在设计带通、低通
2、滤波器时采用了Butterworth 滤波器;并经过蒙特卡洛仿真模型对误码率进行了分析。关键词:BPSK;调制;滤波器;蒙特卡洛分析I目 录一、前言 .1二、设计意义及任务 .22.1 目的与意义 .22.2 任务及要求 .2三、设计方案与原理 .33.1 系统总体设计 .33.1.1 通信系统模型 .33.2 原理介绍 .43.2.1 调制的概念 .43.2.2 调制的种类 .43.2.3 调制的作用 .43.2.4 调制方式 .43.3 BPSK 调制基本原理 .53.3.1 BPSK 调制原理 .53.3.2 BPSK 数字解调原理 .73.4 蒙特卡洛(Monte Carlo)仿真的简
3、介 .8四、仿真结果及分析 .104.1 各部分仿真结果 .104.1.1 BPSK 信号调制的实现 .104.1.2 加噪及经带通滤波后的信号 .134.1.3 与恢复载波相乘后的信号 .144.1.4 抽样判决及消除延迟 .144.1.5 计算误码率 .164.2 仿真结果分析 .18设计总结 .19参考文献 .20致 谢 .210一、前言 在信息时代的现在,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段,数字信号的调制就显得尤为重要。数字信号传输方式分为数字带通传输和数字基带传输。带通调制通常需要一个正弦波作为载波,把基带信号调制到这个载波上,使这个载波的一个
4、或者几个参量上载有基带数字信号的信息,并且还要使已调信号的频谱倒置适合在给定的带通信道中传输。特别是在无线电通信中,调制是必不可少的,因为要使信号能以电磁波的方式发送出去,信号所占用的频带位置必须足够高,并且信号所占用的频带宽度不能超过天线的的通频带,所以基带信号的频谱必须用一个频率很高的载波调制,使期带信号搬移到足够高的频率上,才能够通过天线发送出去。基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。而非线性调制则是指它们的结构完全不同不仅仅是频谱搬移,在接收方会出现很多新的频谱分量。在三种基本的调制中,ASK
5、 属于线性调制,而 FSK 和PSK 属于非线性调制。已调信号会在接收方通过各种方式通过解调得到,但是由于噪声和码间串扰,总会有一定的失真。所以人们总是在寻找不同的接收方式来降低误码率,其中的接收方式主要有相干接收和非相干接收。在接收方通过载波的相位信号去检测信号的方法称为相干检测,反之若不利用就称为非相干检测,而对于一些特别的调制有特别的解调方式,如过零检测法。系统的性能好坏取决于传输信号的误码率,而误码率不仅仅与信道、接收方法有关还和发送端采用的调制方式有很大的关系。我们研究的ASK,FSK, PSK 等就主要是发送方的调制方式。对于本次课程设计二进制相移键控 BPSK(Binary Ph
6、ase Shift Key)是利用载波的相位变化来传递数字信息,而振幅和频率保持不变的一种数字带通调制方式。本文主要对 BPSK 信号的原理及其相干解调系统性能进行了分析和仿真,这样能让我们对数字调制方式有一个更清楚的认识。在实际应用中,PSK 具有恒包络特性,频带利用率比 FSK高,在相同信噪比的条件下误码率也较低,同时 PSK 调制实现相对简单,故卫星通信,遥测遥控中用得最多的是 BPSK 方式调制。1二、设计意义及任务2.1 目的与意义BPSK (Binary Phase Shift Keying),把模拟信号转换成数据值的转换方式之一,利用偏离相位的复数波浪组合来表现信息键控移相方式。
7、BPSK 使用了基准的正弦波和相位反转的波浪,使一方为 0,另一方为 1,从而可以同时传送接受 2 值(1 比特 )的信息。移相键控分为绝对移相和相对移相两种。以未调载波的相位作为基准的相位调制叫作绝对移相。以二进制调相为例,取码元为“1“时,调制后载波与未调载波同相;取码元为“0“ 时,调制后载波与未调载波反相;“1“和“0“时调制后载波相位差 180。就模拟调制法而言,与产生 2ASK 信号的方法比较,只是对 s(t)要求不同,因此BPSK 信号可以看作是双极性基带信号作用下的 DSB 调幅信号。而就键控法来说,用数字基带信号 s(t)控制开关电路,选择不同相位的载波输出,这时 s(t)为
8、单极性 NRZ 或双极性 NRZ 脉冲序列信号均可。本设计分析 BPSK 调制和解调系统,并用 BPSK 软件仿真调制系统,最后建立蒙特卡洛仿真模型,统计系统误码率。该题目概括了MATLAB 技术、通信系统原理等课程的主要知识点,通过该设计能够培养和提高学生综合设计能力,为今后的学习和工作积累经验。2.2 任务及要求1、掌握 BPSK 调制的基本原理;2、分析 BPSK 系统,及其误码性能;3、利用 MATLAB 软件建立系统仿真平台;4、建立蒙特卡洛仿真模型,统计系统误码率。2三、设计方案与原理 3.1 系统总体设计总体的系统设计方案如图 3.1.1 所示:图 3.1.1 系统方案图3.1.
9、1 通信系统模型信道:信道就是信号的通道。通信系统一般模型如图 3.1.2 所示:图 3.1.2 通信系统一般模型就总体而言,信道应看作一个线性系统,满足线性叠加原理。信号在信道中传输,存在衰耗和时延,信道中总是存在噪声,信号在实际信道中传输,将会产生失真,任何信道都有一定的频率带宽,信道不可能传送功率无限大的信号。数字通信系统模型如图 3.1.3 所示:产生数字基带信号2PSK 调制加入高斯白噪声2PSK 解调计算误码率接收设备 信宿信源 发送设备 信道噪声3信源编码信道编码数字调制数字解调信道译码信源译码收信者信道噪声源信息源图 3.1.3 数字通信系统模型3.2 原理介绍3.2.1 调制
10、的概念调制(modulation) 就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。而解调则是将基带信号从载波中提取出来以便预定的接收者(也称为信宿)处理和理解的过程。 3.2.2 调制的种类调制的种类很
11、多,分类方法也不一致。按调制信号的形式可分为模拟调制和数字调制。用模拟信号调制称为模拟调制;用数据或数字信号调制称为数字调制。按被调信号的种类可分为脉冲调制、正弦波调制和强度调制(如对非相干光调制)等。调制的载波分别是脉冲,正弦波和光波等。正弦波调制有幅度调制、频率调制和相位调制三种基本方式,后两者合称为角度调制。此外还有一些变异的调制,如单边带调幅、残留边带调幅等。脉冲调制也可以按类似的方法分类。此外还有复合调制和多重调制等。不同的调制方式有不同的特点和性能。3.2.3 调制的作用 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将
12、调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。3.2.4 调制方式在通信中,我们常常采用的调制方式有以下几种:1、模拟调制:用连续变化的信号去调制一个高频正弦波,主要有:41) 幅度调制(调幅 AM、双边带 DSB、单边带 SSB、残留边带 VSB 以及独立边带 ISB) ;2) 角度调制(调频 FM,调相 PM)两种。因为相位的变化率就是频率,所以调相波和调频波是密切相关的;2、数字调制:用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过称成为数字调制,主要有:1) 振幅键控 ASK;2)
13、 频率键控 FSK;3) 相位键控 PSK;3、脉冲调制:用脉冲序列作为载波,主要有:1) 脉冲幅度调制(PAM :Pulse Amplitude Modulation) ;2) 脉宽调制 (PDM :Pulse Duration Modulation) ;3) 脉位调制 (PPM:Pulse Position Modulation) 。3.3 BPSK 调制基本原理3.3.1 BPSK 调制原理数字带通传输中一般利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制,比如对载波的振幅、频率和相位进行键控分别可以获得振幅键控(ASK) 、频移键控(FSK)和相移键控(PSK) 。BPSK
14、(Binary Phase Shift Keying)是二进制相移键控,它是一种相位调制算法。相位调制(调相)是频率调制(调频)的一种演变,载波的相位被调整用于把数字信息的比特编码到每一词相位改变(相移)。BPSK 中的“PSK”表示使用移相键控方式,移相键控是调相的一种形式,用于表达一系列离散的状态。BPSK 具有以下特点:(1)抗噪能力强;(2)较高的频带利用率;(3)抗加性高斯白噪声方面,BPSK 性能较好。用二进制数字基带信号控制载频的相位实现调制称为相移键控 PSK,即随着基带信号0、1 的变化,载波的相位发生 0、 的变化来传递数字信息,而振幅和频率保持不变。在BPSK 中,通常用
15、初始相位 0 和 分别表示二进制 1 和 0。因此,2PSK 信号的时域表达式为:)cos(A)(2PSKntte (3-1)其中, 表示第 n 个符号的绝对相位:5”时发 送 “时发 送, 1,0n (3-2)因此,式(2-2)可以改写为: Pttec1,osA)(2PSK概 率 为概 率 为(3-3)典型的波形如图 2.1.1 所示。由于两种码元的波形相同,极性相反,故 BPSK 信号可以表述为一个双极性全占空(100 duty ratio)矩形脉冲序列与一个正弦载波的相乘,即:ttseco)(2PSK (3-4)其中nsTtgats)()( (3-5)这里,s(t) 为双极性全占空(非归
16、零)矩形脉冲序列,g(t)是脉宽为 Ts 的单个矩形脉冲,而 an 的统计特性为:(3-6)图 3.1.1 2PSK 信号的时间波形2PSK 信号的调制原理框图如图 2.1.2 所示。这里的 s(t)信号是双极性的基带信号。(a) 模拟调制方法码型变换 乘法器 双极性不归零s(t) 0s(t)相移开关电路6(b) 键控法图 3.1.2 2PSK 信号的调制原理框图3.3.2 BPSK 数字解调原理2PSK 信号的解调通常采用相干解调法,由于 PSK 信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息,采用相干解调法来解调信号。解调器原理框图如图3.3.2 中(a)所示。由于 2
17、PSK 信号的相位和参考和参考相位的关系是固定的,所以相干解调实际上就是将输入的 2PSK 信号与本地恢复的相干载波进行相位比较,根据相位相同或相反形成二进制绝对码。图 3.3.2(b)中解调过程实质上是已调信号与本地载波进行极性比较的过程,因此,这种调制方式又称为极性比较法。(a) 解调器原理框图1010sT tabcd1 tttte11100(b) 2PSK 各点时间波形图 3.3.2 2PSK 信号的解调框图定时脉冲bdca带通滤波器 乘法器抽样判决器低通滤波器e7图中,假设相干载波的基准相位与 2PSK 信号的基准一致(通常默认为 0 相位)。由于PSK 信号的功率谱中无载波分量,所以
18、必须采用相干解调的方式。在相干解调中,如何得到同频同相的本地载波是个关键问题。只有对 PSK 信号进行非线性变换,才能产生载波分量。2PSK 信号经过带通滤波器得到有用信号,经相乘器与本地载波相乘再经过低通滤波器得到低频信号 v(t),再经抽样判决得到基带信号。由最佳判决门限分析可知,在发送“1”符号和发送“0”符号概率相等时,最佳判决门限 b* = 0。此时,发“1”而错判为“0” 的概率为(3-7)同理,发送“0”而错判为“1”的概率为(3-8)故 2PSK 信号相干解调时系统的总误码率为:(3-9)在大信噪比条件下,上式可近似为:(3-10)采用 PSK 信号的相干解调器进行解调,如图
19、3.3.2 所示,图中,假设相干载波的基准相位与 BPSK 信号的调制载波的基准相位一致(通常默认为 0 相位)。但是,由于在 BPSK 信号的载波恢复过程中存在着 180的相位模糊,即恢复的本地载波与所需的相干载波可能同相,也可能反相,这种相位关系的不确定性将会造成解调出来的数字基带信号与发送的数字基带信号正好相反,即“1”变为“0”,“0” 变为“1” ,判决器输出数字信号全部出错。这种现象称为 BPSK 方式的 “倒 ”现象或“反相工作”。3.4 蒙特卡洛(Monte Carlo)仿真的简介随机模拟方法,也称为 Monte Carlo 方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进行的研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯诺伊曼用驰名世界的赌城摩纳哥的 Monte Carlo 来命名这种方法,为它蒙上了一层神秘色彩。冯诺伊曼是公理化方法和计算机体系的领袖人物,Monte Carlo 方法也是他的功劳。 事实上,Monte Carlo 方法的基本思想很早以前就被人们所发现和利用。早在 17 世纪,