1、1中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式: 22BABAxy2、中点坐标:线段 的中点 的坐标为:BCy,直线 ( )与 ( )的位置关系:1bxky02bxky0(1)两直线平行 且 (2)两直线相交11 21k(3)两直线重合 且 (4)两直线垂直2121 213、一元二次方程有整数根问题,解题步骤如下: 用 和参数的其他要求确定参数的取值范围; 解方程,求出方程的根;(两种形式:分式、二次根式) 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。例:关于 x的一元二次方程 有两个整数根, 且 为整数,求 的值。0122 mxx5mm4、二次
2、函数与 轴的交点为整数点问题 。(方法同上)x例:若抛物线 与 轴交于两个不同的整数点,且 为正整数,试确定312xmy m此抛物线的解析式。5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:已知关于 的方程 ( 为实数),求证:无论 为何值,方程x23(1)230xm总有一个固定的根。解:当 时, ;0m当 时, , , 、 ;032x21x32112x综上所述:无论 为何值,方程总有一个固定的根是 1。6、函数过固定点问题,举例如下:已知抛物线 ( 是常数),求证:不论 为何值,该抛物线总经过一个22mxy m2固定的点,并求出固定点的坐标。解:把原解析式变形为关于 的方
3、程 ;mxmxy12 ,解得: ;012xy1 抛物线总经过一个固定的点(1,1)。(题目要求等价于:关于 的方程 不论 为何值,方程恒成立)mxmxy12小结:关于 的方程 有无数解xba0 ba7、路径最值问题(待定的点所在的直线就是对称轴)(1)如图,直线 、 ,点 在 上,分别在 、 上确定两点 、 ,使得1l2A2l1l2MN之和最小。MNA(2)如图,直线 、 相交,两个固定点 、 ,分别在 、 上确定两点 、 ,使得1l2AB1l2MN之和最小。ANMB(3)如图, 是直线 同旁的两个定点,线段 ,在直线 上确定两点 、 ( 在BA、 l alEF的左侧 ),使得四边形 的周长最
4、小。FEF8、在平面直角坐标系中求面积的方法:直接用公式、割补法三角形的面积求解常用方法:如右图,S PAB =1/2 PMx=1/2 ANy9、函数的交点问题:二次函数( )与一次函数( )cbxay 2 hkxy(1)解方程组 可求出两个hkxyca 2图象交点的坐标。(2)解方程组 ,即 ,0 c3通过 可判断两个图象的交点的个数有两个交点 0仅有一个交点 没有交点 10、方程法(1)设:设主动点的坐标或基本线段的长度(2)表示:用含同一未知数的式子表示其他相关的数量(3)列方程或关系式11、几何分析法特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图
5、形时,利用几何分析法能给解题带来方便。几何要求 几何分析 涉及公式 应用图形跟平行有关的图形 平移 、2121kl 21xy平行四边形矩形梯形跟直角有关的图形勾股定理逆定理利用相似、全等、平行、对顶角、互余、互补等22BABAy直角三角形直角梯形矩形跟线段有关的图形利用几何中的全等、中垂线的性质等。22BABAx等腰三角形全等等腰梯形4跟角有关的图形利用相似、全等、平行、对顶角、互余、互补等【例题精讲】一 基础构图:y= (以下几种分类的函数解析式就是这个)32x和最小,差最大 在对称轴上找一点 P,使得 PB+PC 的和最小,求出 P 点坐标在对称轴上找一点 P,使得 PB-PC 的差最大,
6、求出 P 点坐标求面积最大 连接 AC,在第四象限找一点 P,使得 面积最大,求出 P 坐标AC 讨论直角三角 连接 AC,在对称轴上找一点 P,使得 为直角三角形,AC求出 P 坐标或者在抛物线上求点 P,使ACP 是以 AC 为直角边的直角三角形 讨论等腰三角 连接 AC,在对称轴上找一点 P,使得 为等腰三角形,AC求出 P 坐标O xyABCDO xyABCDO xyABCD5 讨论平行四边形 1、点 E 在抛物线的对称轴上,点 F 在抛物线上,且以 B,A ,F, E 四点为顶点的四边形为平行四边形,求点 F 的坐标二 综合题型例 1 (中考变式)如图,抛物线 cbxy2与 x 轴交
7、与 A(1,0),B(-3,0)两点,顶点为D。交 Y 轴于 C(1)求该抛物线的解析式与ABC 的面积。(2)在抛物线第二象限图象上是否存在一点 M,使MBC 是以BCM 为直角的直角三角形,若存在,求出点 P 的坐标。若没有,请说明理由(3)若 E 为抛物线 B、C 两点间图象上的一个动点(不与 A、B 重合),过 E 作 EF 与 X 轴垂直 ,交BC 于 F,设 E 点横坐标为 x.EF 的长度为 L,求 L 关于 X 的函数关系式?关写出 X 的取值范围?当 E 点运动到什么位置时,线段 EF 的值最大,并求此时 E 点的坐标?(4)在(5)的情况下直线 BC 与抛物线的对称轴交于点
8、 H。当 E 点运动到什么位置时,以点E、F、H、D 为顶点的四边形为平行四边形?O xyABCD6(5)在(5)的情况下点 E 运动到什么位置时,使三角形 BCE 的面积最大?例 2 考点: 关于面积最值 如图,在平面直角坐标系中,点 A、C 的坐标分别为( 1, 0)、(0, ),点 B 在 x 轴上已知某3二次函数的图象经过 A、B、C 三点,且它的对称轴为直线 x1,点 P 为直线 BC 下方的二次函数图象上的一个动点(点 P 与 B、C 不重合),过点 P 作 y 轴的平行线交 BC 于点 F(1)求该二次函数的解析式;(2)若设点 P 的横坐标为 m,试用含 m 的代数式表示线段
9、PF 的长;(3)求PBC 面积的最大值,并求此时点 P 的坐标例 3 考点:讨论等腰如图,已知抛物线 y x 2bxc 与 y 轴相交于 C,与 x 轴相交于 A、B,点 A 的坐标为(2,0),1点 C 的坐标为(0,1)(1)求抛物线的解析式;(2)点 E 是线段 AC 上一动点,过点 E 作 DEx 轴于点 D,连结 DC,当DCE 的面积最大时,求点 D 的坐标;(3)在直线 BC 上是否存在一点 P,使ACP 为等腰三角形,若存在,求点 P 的坐标,若不存在,说明理由DBCO AyxE BCO A备用图yxyxBA FPx1CO7例 4 考点:讨论直角三角 如图,已知点A(一1,0
10、 )和点B(1,2),在坐标轴上确定点P,使得ABP为直角三角形,则满足这样条件的点P共有( )(A)2个 (B)4个 (C) 6个(D)7个 已知:如图一次函数 y x1 的图象与 x 轴交于点 A,与 y 轴交于点 B;二次函数 y x 2 212bxc 的图象与一次函数 y x1 的图象交于 B、C 两点,与 x 轴交于 D、E 两点且 D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形 BDEC 的面积 S;(3)在 x 轴上是否存在点 P,使得PBC 是以 P 为直角顶点的直角三角形?若存在,求出所有的点 P,若不存在,请说明理由例 5 考点:讨论四边形已知:如图所示,关
11、于 x 的抛物线 y ax 2x c(a0)与 x 轴交于点 A( 2,0),点B(6,0),与 y 轴交于点 C(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点 D,使四边形 ABDC 为等腰梯形,写出点 D 的坐标,并求出直线 AD的解析式;(3)在(2)中的直线 AD 交抛物线的对称轴于点 M,抛物线上有一动点 P,x 轴上有一动点OAByCxD E28Q是否存在以 A、M、P 、Q 为顶点的平行四边形?如果存在,请直接写出点 Q 的坐标;如果不存在,请说明理由综合练习:1、 平面直角坐标系 xOy 中, 抛物线 与 x 轴交于点 A、点 B,与 y 轴的正半轴24ya
12、xac交于点 C,点 A 的坐标为(1, 0),OB OC,抛物线的顶点为 D。(1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点 P 满足APB ACB,求点 P 的坐标;(3) Q 为线段 BD 上一点,点 A 关于AQB 的平分线的对称点为 ,若 ,求点 QA2BQ的坐 标和此时 的面积。2、 在平面直角坐标系 中,已知二次函数 的图像与 轴交于点 ,与xOy2+yaxcy3 0,C轴交于 A、B 两点,点 B 的坐标为 。x0 3,(1) 求二次函数的解析式及顶点 D 的坐标;(2) 点 M 是第二象限内抛物线上的一动点,若直线 OM 把四边形 ACDB 分成面积为 1 :2
13、的两部分,求出此时点 的坐标;(3) 点 P 是第二象限内抛物线上的一动点,问:点 P 在何处时 的面积最大?最大面CB积是多少?并求出此时点 P 的坐标。BAyOCx93、 如图,在平面直角坐标系 中,抛物线 与 轴负半轴交于点 ,顶点为 ,xOyxmy2AB且对称轴与 轴交于点 。xC(1)求点 的坐标(用含 的代数式表示);Bm(2) 为 中点,直线 交 轴于 ,若 (0, 2),求抛物线的解析式;DADyE(3)在(2)的条件下,点 在直线 上,且使得 的周长最小, 在抛物线上, 在MOBAMCPQ直线 上,若以 为顶点的四边形是平行四边形,求点 的坐标。BCQP、4、 已知关于 的方
14、程 。x2(1)(4)30mx(1) 若方程有两个不相等的实数根,求 的取值范围;(2) 若正整数 满足 ,设二次函数 的图象与 轴交于82(1)(4)3ymxx两点,将此图象在 x 轴下方的部分沿 x 轴翻折,图象的其余部分保持不变,得到一AB、个新的图象;请你结合这个新的图象回答:当直线 与此图象恰好有三个公共点k时,求出 的值(只需要求出两个满足题意的 k 值即可)。k105 如图,抛物线 y=ax2+2ax+c(a0)与 y 轴交于点 C(0,4),与 x 轴交于点 A(4,0)和 B(1)求该抛物线的解析式;(2)点 Q 是线段 AB 上的动点,过点 Q 作 QEAC,交 BC 于点
15、 E,连接 CQ当CEQ 的面积最大时,求点 Q 的坐标;(3)平行于 x 轴的动直线 l 与该抛物线交于点 P,与直线 AC 交于点F,点 D 的坐标为( 2,0)问是否有直线 l,使 ODF 是等腰三角形?若存在,请求出点 F 的坐标;若不存在,请说 明理由三、中考二次函数代数型综合题题型一、抛物线与 x 轴的两个交点分别位于某定点的两侧例 1已知二次函数 y x 2( m1) x m2 的图象与 x 轴相交于 A( x1,0), B( x2,0)两点,且 x1 x2(1)若 x1x20,且 m 为正整数,求该二次函数的表达式;(2)若 x11, x21,求 m 的取值范围;(3)是否存在实数 m,使得过 A、 B 两点的圆与 y 轴相切于点 C(0,2),若存在,求出 m 的值;若不存在,请说明理由;(4)若过点 D(0, )的直线与(1)中的二次函数图象相交于 M、 N 两点,且 ,求该直12 MDDN 13