1、 1 第 1 章 习 题 B 习 题 B1-1 举例说明 2-3 个你熟悉的计算机控制系统,并说明与常规连续模拟控制系统相比的优点。 B1-2 利用计算机及接口技术的知识,提出一个用同一台计算机控制多个被控参量的分时巡回控制方案。 B1-3 题图 B1-3 是一典型模拟式火炮位置控制系统的原理结构图。由雷达测出目标的高低角、方位角和斜距,信号经滤波后,由模拟式计算机计算出伺服系统高低角和方位角的控制指令,分别加到炮身的高低角和方位角伺服系统,使炮身跟踪指令信号。为了改善系统的动态和稳态特性,高低角和方位角伺服系统各自采 用了有源串联校正网络和测速反馈校正,同时利用逻辑电路实现系统工作状态的控制
2、 (如偏差过大时可断开主反馈,实现最大速度控制,当偏差小于一定值后实现精确位置控制 )。试将其改造为计算机控制系统,画出系统原理结构图。 题图 B1-3 典型模拟式火炮位置控制系统的原理结构图 B1-4 水位高度控制系统如题图 B.1-4 所示。水箱水位高度指令由 W1 电位计指令电压 ur 确定,水位实际高度 h 由浮子测量,并转换为电位计 W2 的输出电压 uh。用水量 Q1 为系统干扰。当指令高度给定后,系统保持 给定水位,2 如打开放水管路后,水位下降,系统将控制电机,打开进水阀门,向水箱供水,最终保持水箱水位为指令水位。试把该系统改造为计算机控制系统。画出原理示意图及系统结构图。 题
3、图 B1-4 水箱水位控制系统原理示意图 B1-5 题图 B1-5 为一机械手控制系统示意图。将其控制器改造为计算机实现,试画出系统示意图及控制系统结构图。 题图 B1-5 机械手控制系统示意图 B1-6题图 B1-6 为仓库大门自动控制系统示意图。试将其改造为计算机控制系统,画出系统示意图。 3 题图 B1-6 仓库大门自动控制系统示意图 B1-7 车床进给伺服系统示意图如题图 B1-7 所示。电动机通过齿轮减速机构带动丝杠转动,进而使工作台面实现直线运动。该系统为了改善系统性能,利用测速电机实现测速反馈。试将该系统改造为计算机控制系统,画出系统示意图。 题图 B1-7 车床进给伺服系统示意
4、图 B1-8 现代飞机普遍采用数字式自动驾驶仪稳定飞机的俯仰角、滚转角和航向角。连续模拟式控制系统结构示意图如题图 B1-8 所示。图中所有传感器、舵机及指令信号均为连续模拟信号。试把该系统改造为计 算机控制系统,画出系统结构图。 副翼舵机滚转角控制器滚转角指令升降舵机俯仰角控制器俯仰角传感器滚转角传感器航向角控制器方向舵机航向角传感器俯仰角指令航向角指令题图 B1-8 飞机连续模拟式姿态角控制系统结构示意图 4 第 2 章 习 题 A 习题(具有题解) A 2-1 下述信号被理想采样开关采样,采样周期为 T,试写出采样信号的表达式。 1) ( ) 1( )f t t 2) ( ) eatf
5、t t 3 ) ( ) e s in ( )atf t t 解: 1) *0( ) 1 ( ) ( )kf t k T t k T; 2) *0( ) ( ) ( )a k Tkf t k T e t k T ; 3) *0( ) sin ( ) ( )a k Tkf t e k T t k T A 2-2 已知 f(t) 的拉氏变换式 F(s) ,试求采样信号的拉氏变换式 F* (s)(写成闭合形式 ) 。 11) ( ) ( 1)Fs ss 12 ) ( ) ( 1 ) ( 2 )Fs ss 解: 1) 首先进行拉氏反变换,得 ( ) 1 e tft ; * ( 1 )0 0 0 0( )
6、 ( ) e ( 1 e ) e e ek T s k T k T s k T s k T sk k k kF s f k T 因为 201e 1 e e 1ek Ts Ts Ts Tsk , 1Tse , (依等比级数公式 ) 类似, ( 1 )(1 )0 1e 1ek s T sTk , ( 1)e1Ts ,所以有 * ( 1 )11() 1 e 1 eT s T sFs A 2-3 试分别画出 10( ) 5e tft 及其采样信号 *()ft的幅频曲线 (设采样周期 T0.1s)。 解:连续函数 10( ) 5e tft 的频率特性函数为: 5( j )10 jF 。 5 连续幅频曲线
7、可以用如下 MATLAB 程序绘图: step=0.1; Wmax=100; w2=-Wmax; y2=5*abs(1/(10+w2*i); W=w2; Y=y2; for w=-Wmax:step:Wmax y=5*abs(1/(10+w*i); W=W,w; Y=Y,y; end plot(W,Y); axis(-Wmax Wmax 0 0.6) grid 结果如题图 A 2-3-1 所示。 题图 A 2-3-1 该函数的采样信号幅频谱数学表达式为 *s1( j ) ( j j )nF F nT * ss1( j ) ( j j )nF F nT 1 ( j j )N snN FnT 显然
8、,采用的项数 N 越大,则计算得到的值越逼近于实际值。这里采用 9N来进行计算。 采样幅频曲线可以用如下 MATLAB 程序绘图: 6 T=0.1; %采样周期 ws=2*pi/T; %采样频率 num=50; %每个采样周期的计算点数 step=ws/num; %计算步长 Wmax=150; %画图显示的频率范围 GW=4*Wmax; %计算的频率范围 g0=(1/T)*5*abs(1/(1+10*GW*i); G00=g0; g0=(1/T)*5*abs(1/(10+(GW+ws)*i); G11=g0; g0=(1/T)*5*abs(1/(10+(GW-ws)*i); G12=g0; g
9、0=(1/T)*5*abs(1/(10+(GW+2*ws)*i); G21=g0; g0=(1/T)*5*abs(1/(10+(GW-2*ws)*i); G22=g0; g0=(1/T)*5*abs(1/(10+(GW+3*ws)*i); G31=g0; g0=(1/T)*5*abs(1/(10+(GW-3*ws)*i); G32=g0; g0=(1/T)*5*abs(1/(10+(GW+4*ws)*i); G41=g0; g0=(1/T)*5*abs(1/(10+(GW-4*ws)*i); G42=g0; g0=(1/T)*5*abs(1/(10+(GW+5*ws)*i); G51=g0;
10、g0=(1/T)*5*abs(1/(10+(GW-5*ws)*i); G52=g0; g0=(1/T)*5*abs(1/(10+(GW+6*ws)*i); G61=g0; g0=(1/T)*5*abs(1/(10+(GW-6*ws)*i); G62=g0; g0=(1/T)*5*abs(1/(10+(GW+7*ws)*i); G71=g0; g0=(1/T)*5*abs(1/(10+(GW-7*ws)*i); G72=g0; g0=(1/T)*5*abs(1/(10+(GW+8*ws)*i); G81=g0; g0=(1/T)*5*abs(1/(10+(GW-8*ws)*i); G82=g0;
11、 g0=(1/T)*5*abs(1/(10+(GW+9*ws)*i); G91=g0; g0=(1/T)*5*abs(1/(10+(GW-9*ws)*i); G92=g0; 其余类似,最后可得,结果如题图 A 2-3-2 所示。 7 - 1 5 0 - 1 0 0 - 5 0 0 50 100 1500246810题 图 A 2-3-2 A 2-4 若数字计算机的输入信号为 10( ) 5 tf t e ,试根据采样定理选择合理的采样周期 T。 设信号中的最高频率为 m 定义为 m( ) 0 .1 (0 )F j F 。 解: 5() 10Fs s ; 5( j )j 10F ; 所以有 22
12、m5 0 . 1 50 . 1 ( 0 ) 0 . 0 51010 F 2 2 2m ax0 .0 5 ( 1 0 ) 2 5 由此可得 max 99.5 依采样定理得: max2 199srad/s A 2-5 已知信号 x 1cos( )At ,试画出该信号的频谱曲线以及它通过采样器和理想滤波器以后的信号频谱。设采样器的采样频率分别为 41, 1.51,和 1 3种情况。解释本题结果。 解: 1cos( )t 的频谱为脉冲, 如题图 A 2-5-1 所示。 当采样频率 s14 时,采样频谱如题图 A 2-5-1 所示。由于满足采样定理,通过理想滤波器后,可以不失真恢复原连续信号。 (见题图
13、 A 2-5-2) 当采样频率 s11.5 时,采样频谱如题图 A 2-5-1 所示。由于不满足采样定理,采样频率发生折叠,当通过理想滤波器后,只保留了折叠后的低频信号,其频率8 为 1 1 11.5 0.5 。 (见题图 A 2-5-2) 当采样频率 s1 时,采样频谱如题图 A 2-5-1 所示。由于不满足采样定理,采样频率发生折叠,折叠后的低频信号位于 0 处,当通过理想滤波器后,只保留了折叠后的低频信号,其频率为 0 ,即直流信号。 (见题图 A 2-5-2) A/2A/200A/2T0( j )F * ( j )F * ( j )F * ( j )F ( r a d/s )( r a
14、 d/s )( r a d/s )( r a d/s )s1411.5ss11111111 ss1题图 A 2-5-1 * ( j )F * ( j )F * ( j )F ( r a d/s )( r a d/s )( r a d/s )11 /2s s14s1 1.5题图 A 2-5-2 A 2-6 已知信号 x 1cos( )At ,通过采样频率 s13 的采样器以后。又由零阶保持器恢复成连续信号,试画出恢复以后信号的频域和时域曲线;当 s110时,情况又如何 ?比较结果。 解:见题图 A 2-6。 9 A / 2A / 200000( j )F * ( j )F * ( j )F *
15、( j )F * ( j )F s2 s3 s1111s 1s111 ( r a d/s )( r a d/s )( r a d/s )( r a d/s )( r a d/s )s13s110题图 A 2-6 结果表明,当采样频率较低时,零阶保持器输出阶梯较大,高频分量较大。 A 2-7 已知信号 ss in ( ) s in ( 4 ) , 1 , 3 , 4 ,x t y t 和 若试求各采样信号的 x(kT)及y(kT),并说明由此结果所得结论。 解: ( ) s i n ( ) s i n ( 2 /)sx k T k T k ; s( ) s i n ( 4 ) s i n ( 8
16、 /)y k T k T k ss1 , ( ) s i n ( 2 / ) s i n ( 2 )0x k T k k ; ( ) sin (8 )0y kT k s3 , ( ) s i n ( 2 / ) s i n ( 2 / 3 )s x k T k k ; s( ) s i n ( 4 ) s i n ( 8 / ) s i n ( 8 / 3 ) s i n ( 2 2 / 3 ) s i n ( 2 / 3 )y k T k T k k k k k 。 ss4 , ( ) s i n ( 2 / ) s i n ( 2 / 4 ) s i n ( / 2 )x k T k k
17、k ; s( ) s i n ( 4 ) s i n ( 8 / ) s i n ( 8 / 4 ) s i n ( 2 )y k T k T k k k 结果表明,不满足采样定理,高频信号将变为低频信号。 A 2-8 试证明 ZOH 传递函数h 1e()sTGs s 中的 s 0 不是 Gh (s)的极点,而10 21e()sTYs s 中,只有一个单极点 s 0。 解: 22h 1 e 1 ( 1 ( ) / 2() 2sT s T s T T sG s Tss 可见21e()sTYs s 只有一个 s=0 极点。 表明分母上实际不存在积分环节。 A 2-9 对一信号进行采样,信号频谱如题
18、图 A 2-9 所示,其中感兴趣的频率范围为 (0 1 ) ,已知干扰信号频率 f =5 1,试讨论采样周期及前置滤波器的选择。 题图 A 2-9 解:依采样定理要求,为使采样信号不失真,要求采样频率应满足 s12 ;另外,对干扰频率 f 来说,为使其不进入感兴趣的频率范围内,要求s 1 f s( / 2 ) ( / 2 ) ,所以,要求 s 1 f 16 。因此有 2 种情况: 1) 如果 s16 ,那么干扰信号并不会与数据信号相混叠,干扰可通过数字滤波器滤掉; 2) 采用抗混叠前置滤波器进行滤除,则采样频率取 s12 。如要求干扰信号在信号频率处衰减 20 dB,那么一个 n 阶滤波器的最大衰减率为 20 /ndB dec ,所以为了到达在 fslo g / lo g 5 0 .6 9 9 十倍频程内衰老 20 dB,应取 2n 。 A 2-10 用 z 变换法求解下列差分方程。 ( 1) ( 1) ( ) ( )c k b c k r k ,已知输入信号 ()kr k a ,初始条件 (0) 0c 。 ( 2) ( 2 ) 4 ( 1 ) 3 ( ) 2c k c k c k k ,已知初始条件 (0) (1) 0cc。