热力学第一定律习题辅导.ppt

上传人:da****u 文档编号:1126785 上传时间:2018-12-11 格式:PPT 页数:18 大小:156KB
下载 相关 举报
热力学第一定律习题辅导.ppt_第1页
第1页 / 共18页
热力学第一定律习题辅导.ppt_第2页
第2页 / 共18页
热力学第一定律习题辅导.ppt_第3页
第3页 / 共18页
热力学第一定律习题辅导.ppt_第4页
第4页 / 共18页
热力学第一定律习题辅导.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、热力学第一定律习题辅导 体积功的主要计算公式:W= p外 dV 功的通用计算公式1. 理想气体等温可逆过程 : 3. 自由膨胀过程 :p外 0, 有: W 02. 等外压过程 :理想气体外压恒等于体系末态压力的等温过程: pVdT=0dT=0C(UC) V1 V2A(UA) B(UB) 理想气体 U的计算 :如图 ,体系从 A变化到 B,其内能改变量为 UAB理想气体 U的计算式为 :U=CV T=CV(T2-T1),此式为等容升温过程的计算式 . 过 A,B各引一条等温线 .CV T即为 B,C两态的内能差 ,即 : CV T=UBC因为 A,C在同一条等温线上,故 UA=UC,故有 :UA

2、B= UBC=CV T例 1: 填下列表格 (体系为理想气体 )过 程 W HUQ自由膨胀 p外 =0 等容过程 dV=0 等压过程 dp=0 等温过程 可逆恒外压 绝热过程 可逆不可逆 相变 dp=0, dT=0 化学过程 只作膨胀功(dp=0) 有电功nRTlnV1/V2 =nRTlnp2/p1 p外 (V1V2)W=-p 外 dV=0 0 0 00000000CVdT=CVT CVT=QV CpT - pV p外 =p CpT CVT CpT Q=-WQ=-WCV(T2-T1) =(p2V2-p1V1)/(-1)同上 CVT CVT CpT CpT -p(Vg-Vl)=-nRT Q=nL

3、 nL nRT nL -ngasRT-pV+W 电Qp=HU-W 总 U=Q+WU=Q+WH=QpQ-W 电 例 2. 绝热恒容箱中有一绝热隔板 ,用销钉固定位置 . 隔板两边均有 1摩尔 N2. 去掉隔板并达平衡后 ,求平衡压力 ,以及过程的 W,Q, U和 H?解 : N2可视为理想气体 . 去掉销钉左边气体膨胀 ,右边气体被压缩 , A向 B做功 ,A室温度 降低 ;B室温度升高 . 隔板绝热 ,此过程可视为绝热过程 ,故有 :U1=Q+W 1=W 1 U2=Q+W 2=W 2 U= U1+U2=0 U1=-U2 W 1=-W 2 U1=Cv,1 T1 U2=Cv,2 T2 n1=n2=

4、1.0mol Cv,1=Cv,2 |T1|=|T2| 体系达平衡后 : p1=p2=p p1V1=nRT1 p2V2=nRT2 p(V1+V2)=R(T-T1)+(T+T2)=2RT T1=-T2 T=298K N2 1mol 298K10atmN2 1mol 298K1atm A BN2 1mol 298-TpN2 1mol 298+Tp A BpV=2RT (V1+V2=V)始态 : p1V1=RT V1=RT/p1; p2V2=RT V2=RT/p2V1+V2=RT/p1+RT/p2=RT(1/p1+1/p2)=Vp=2RT/V=2RT/RT(1/p1+1/p2)=2/(1/p1+1/p

5、2)=2/(1/10+1)=1.82 atm整个体系为一孤立体系 ,故有 :U=0 H=0 Q=0此体系最终的压力为一定值 ,但是体系的最终温度为一不定值 ,其具体数值取决于膨胀过程的可逆程度 . 例 3. 有一真空绝热恒容箱 ,在箱上钻一小洞 ,空气 (设为理想气体 )进入箱中 ,求当箱的内外压力刚好相等时 ,箱内空气的温度 ? 设环境温度为 T真空空气p V0 T0 空气p T V解 : 以箱和流入箱中的空气为体系 . 设当内外压力相等时 ,有 n摩尔空气进入箱内 ,其在箱外的状态为 : T0, p, V0 在箱内的状态为 : T, p, V空气由箱外被压入箱内 ,故环境对体系 (进入箱中

6、的空气 )做了功 ,因此箱是一绝热容器 ,故此过程是一绝热过程 ,有 :Q=0 W=p 外 (V2-V1) V1=V+V0 V2=V V= -V0 W= -p 外 V0= -pV0= -nRT0 因为此过程为一绝热过程 ,故有 : U=-W=nRT 0=CV(T-T0) nRT0/CV=T-T0 T=T0+nRT0/CV=T0(1+nR/CV) T=T0(1+(Cp-CV)/CV) Cp-CV=nR T=T0(1+-1)=T0 箱中空气的温度为 T=T0. 如 : T0=298K 体系为单原子分子理想气体 , =5/3 T=5/3298=497K 例 4.对一种单原子分子理想气体沿某一可逆途径

7、加热 , 其热容C=R,求此路径的性质 ? 解 : 设有 1摩尔理想气体 , CV=3/2R Q=dU-W =CVdT+pdV=CVdT+RT/VdV Q/dT=CV+(RT/V)dV/dT Q/dT=C=R (题给条件 ) CV+RT/V(dV/dT)=R=3/2R+RT/V(dV/dT) -1/2R=RT/V(dV/dT)-1/2=TdlnV/dT -1/2dT/T=-1/2dlnT=dlnV 积分 : dlnV=-1/2dlnT lnV=-1/2lnT+K lnV+lnT1/2=K ln(VT1/2)=K VT1/2=K 当气体沿 VT1/2=常数的路径加热时 , 此路径的热容 C=R.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。