1、- 1 -探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类。由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答。由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑: 1利用特殊值(特殊点、特殊数量、
2、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律; 2反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致;3分类讨论法当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果; 4类比猜想法即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证。 以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用。前面诸专题对存在性探究问题型进行了命题,后面将有专题对规律探究型问题进行命题,本专题原创
3、编写条件探究型和结论探究型模拟题。原创模拟预测题 1.【问题情境】如图 1,四边形 ABCD 是正方形,M 是 BC 边上的一点,E是 CD 边的中点,AE 平分DAM【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM 是否成立?若成立,请给出证明;若不成立,请说明理由【拓展延伸】(3)若四边形 ABCD 是长与宽不相等的矩形,其他条件不变,如图 2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明- 2 -【答案】(1)证明见解析;成立;证明见解析;(3)结论 AM=AD+MC 仍然成立结论 AM=DE+BM 不成立【解析】试题解析:(1)延长 AE、BC 交
4、于点 N,如图 1(1),- 3 -ADENCE(AAS)AD=NCMA=MN=NC+MC=AD+MC(2)AM=DE+BM 成立过点 A 作 AFAE,交 CB 的延长线于点 F,如图 1(2)所示四边形 ABCD 是正方形,BAD=D=ABC=90,AB=AD,ABDC- 4 -AM=FMAM=FB+BM=DE+BM(3)结论 AM=AD+MC 仍然成立延长 AE、BC 交于点 P,如图 2(1),- 5 -结论 AM=DE+BM 不成立假设 AM=DE+BM 成立过点 A 作 AQAE,交 CB 的延长线于点 Q,如图 2(2)所示- 6 -QAB=EAD=EAM,AED=BAE=BAM
5、+EAM=BAM+QAB=QAMQ=QAMAM=QMAM=QB+BMAM=DE+BM,QB=DE在ABQ 和ADE 中,DEBQA09ABQADE(AAS)AB=AD与条件“ABAD“矛盾,故假设不成立AM=DE+BM 不成立 考点:1、角平分线的定义;2、平行线的性质;3、全等三角形的判定与性质;4、矩形及正方形的性质- 7 -原创模拟预测题 2.已知点 A(0,0),B(0,3),C(4,t+3),D(4,t). 记N(t)为 ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则 N(t)所有可能的值为【 】A6、7 B7、8 C6、7、8 D6、8、9【答案】
6、D。【考点】平行四边形的性质,坐标和图形的性质。故选 D。原创模拟预测题 3.平面内有四个点 A、B、C、D 组成凸四边形 ABCD,其中ABC=150 0,ADC=30 0,AB=CB=2,则满足题意的 BD 长度为整数的值可以是 ()。62.45,1. 【答案】3,4,5,6,7。- 8 -【考点】圆内接四边形的性质,等腰三角形的性质,勾股定理,含 30 度直角三角形的性质,二次根式化简。原创模拟预测题 4.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图,FDC 与ECD 分别为AD
7、C 的两个外角,试探究A 与FDC+ECD 的数量关系AD CF E探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图,在ADC 中,DP、CP 分别平分ADC 和ACD,试探究P 与A 的数量关系- 9 -AD CP探究三:若将ADC 改为任意四边形 ABCD 呢?已知:如图,在四边形 ABCD 中,DP、CP 分别平分ADC 和BCD,试利用上述结论探究P与A+B 的数量关系A BCPD探究四:若将上题中的四边形 ABCD 改为六边形 ABCDEF 呢?请直接写出P 与A+B+E+F 的数量关系: _ABCDEFP【答案】(1) FDC=A+ACD,ECD=A
8、+ADC, FDC+ECD=A+ACD+A+ADC=180+A (2) DP 平分ADC,PDC= ADC 12同理,PCD= ACD180PDCPCD=180 (180A)=90+ A 1212(3)延长 DA、CB 交于点 O由(2)中结论知,P=90+ O ,由(1)中结论知,A+B=180+O,P=90+ (A+B 180)= (A+B) 1212(4) P= (A+B+E+F) 180 - 10 -(4)根据以上规律得出P= (A+B+E+F)180 21原创模拟预测题 5. 已知 ABAC,DBDE,BACBDE(1)如图 1,60,探究线段 CE 与 AD 的数量关系,并加以证明;(2)如图 2,120,探究线段 CE 与 AD 的数量关系,并说明理由;(3)如图 3,结合上面的活动经验探究线段 CE 与 AD 的数量关系为_ (直接写出答案)(第 26 题图)CEDBA EDCBA ECDBA图 1 图 2 图 3【答案】(1)见解析。(2)见解析。(3)CE=2sin AD2