1、硕士学位论文(20 届)地下水封洞库群涌水量的预测研究以烟台地下水封 LPG库为例Estimation of Water Inflow into Underground Water Sealed Storage Caverns: Take Yantai Underground Water-sealing (LPG) Caverns For Instance姓 名学 科 、 专 业 水利工程研 究 方 向指 导 教 师论文提交日期中国地质大学(武汉)研究生学位论文原创性声明本人郑重声明:本人所呈交的硕士学位论文地下洞库群涌水量预测方法的对比讨论以烟台地下水封 LPG 库为例 ,是本人在导师的指导
2、下,在中国地质大学(武汉)攻读硕士学位期间独立进行研究工作所取得的成果。论文中除已注明部分外不包含他人已发表或撰写过的研究成果,对论文的完成提供过帮助的有关人员已在文中说明并致以谢意。本人所呈交的硕士学位论文没有违反学术道德和学术规范,没有侵权行为,并愿意承担由此而产生的法律责任和法律后果。学位论文作者签名: 日 期: 年 月 日中国地质大学(武汉)学位论文使用授权书本人授权中国地质大学(武汉)可采用影印、缩印、数字化或其它复制手段保存本学位论文;学校可向国家有关部门或机构送交本学位论文的电子版全文,编入有关数据库进行检索、下载及文献传递服务;同意在校园网内提供全文浏览和下载服务。涉密论文解密
3、后适用于本授权书。学位论文作者签名: 日 期: 年 月 日地下洞库群涌水量预测方法的对比讨论以烟台地下水封 LPG 库为例摘 要地下水封洞库是由岩石和赋存于岩层中的地下水共同组成的一个压力容器。它是以地质体做建筑材料,以地质环境做建筑环境修建的一种特殊工程典型的地质工程。与地上储备库相比,在地质条件适宜地区,地下储备库具有安全性高、不占或少占耕地、投资省、污染小、保护环境、节省钢材、使用寿命长等优点。当今大部分地下水封洞库主要用来储存石油,还有少部分用以储存液态或气态的化工原料。保证洞库施工安全和长期安全稳定运行的关键是控制好水封,而如何合理准确预测洞库施工和长期运行不同阶段的涌水量,直接影响
4、到地下结构方案、施工和运行安全以及工程建设成本。目前用于预测地下洞库涌水量的方法主要有比拟法、解析法以及数值模拟分析等多种方法。本文将利用数值模拟法对地下水封洞库群在施工期及运营期的涌水量进行预测,并结合具体的工程情况,分析水文地质模型模型模拟结果的准确性,对地下洞库类工程涌水量的预测工作提出合理化建议。地下水封 LPG(液化石油气 Liquefied Petroleum Gas)洞库类工程的建设在我国才刚刚起步,目前没有很多成功的经验可以借鉴,本文以具体工程为例,介绍了如何运用数值模拟的方法对涌水量进行预测,这也可以为今后地下水封洞库类工程的涌水量预测工作提供一定的借鉴作用。本文的研究区位于
5、山东省烟台市,研究区内岩性主要为燕山一期含中粗粒黑云母二长花岗岩,主要的地下水存在类型为第四系孔隙水和基岩裂隙水。该地下水封液化石油气储备库是目前国内库容最大的,液化烃地下水封洞库设计库容 100 万 m,按储存介质不同而分成三个洞库,其中液化丙烷库 50 万 m,液化丁烷库 25 万 m, LPG 库 25 万m,主要地下工程包括 9 个主洞室、4 个竖井、10 条水幕巷道、6 条交通巷道。洞库建设场地范围,南北长约 750m,东西长约 1000m。本文以烟台某地下水封 LPG 洞库为例,利用数值模拟的方法对该项目施工期及后期运营期间的涌水量大小做了预测。本次论文工作首先从野外调查工作开始,
6、野外调查工作主要包括地下水位的测量、模型边界的踏勘、地下水位季节性波动的测量记录、河流水位、流速和流量的测量等工作。野外第一手资料的准确性非常重要,直接影响到模型模拟的精度和结果的可信度。然后在试验场地上进行了必要的水文地质试验,水文地质试验主要包括提水及恢复试验、注水试验、压水试验等,通过一系列的水文地质试验可以确定模型中的参数,包括渗透系数和降雨入渗系数等。运用三维地下水模拟软件FEFLOW 软件,利用确定好的模拟区范围、模型分层情况、边界条件、模型参数等数据,建立数学模型。首先利用建立好的数学模型模拟天然流场,将结果与钻孔水位和水文地质调查点的水位进行比较,校验模型的仿真性与准确性。同时
7、,模拟出的天然流场的结果可以作为施工期模型的初始流场。然后根据施工期设计,对不同施工阶段以及后期运营期的情况建立对应的数学模型进行模拟计算。对模型运行出的结果进行水均衡分析,得出洞库每天的涌水量及水幕系统每天的补水量。运用 ARCGIS 软件对模型模拟出的不同阶段的渗流场与天然渗流场进行空间分析,得出不同阶段的水位降落漏斗的大小和范围。通过以上一系列工作,本文得到以下结论:1.绝大多数钻孔的平均渗透系数值在 10-410-5m/d 之间。该数量级范围对于地下洞库类项目要求的渗透系数而言较小,水封条件因此可以得到基本保证。2.综合前期水文地质资料,建立了库区三维地下水流动数值模型,并利用实测水位
8、数据对模型进行校验,拟合效果较好,得到的参数以及渗流场可用于后续的洞库施工、运营渗流场的模拟。3.利用拟合得到的模型,对施工期及运营期的涌水量以及相应水幕补水量进行模拟预测。,施工期各阶段最大涌水量介于 94.4316.9m 3/d,而稳定涌水量介于63439m 3/d,水幕在施工期补水量介于 72.3287.6m 3/d。4.施工期内的每个阶段都是初期涌水量比较大,而后期涌水量变小且趋于稳定。这是由于在施工初期,洞库上方的水头较大,进而水力梯度也相对较大,所以洞库涌水量也较大,随着施工的进行,洞库上方的水头由于洞库涌水而降低,导致水力梯度减小,所以涌水量也随之减小。5.运营期洞库涌水量经过短
9、暂的下降之后即很快达到稳定,稳定值约 327.9m3/d,而水幕补水量则经过短暂的上升之后达到稳定,稳定值约 267 m3/d。6.将运营期模型加入断层和节理密集带之后,三个库的涌水量均有小幅度的增加,丁烷库稳定涌水量从 133m3/d 增加到 141m3/d,LPG 库稳定涌水量从 136m3/d 增加到142m3/d,丙烷库稳定涌水量从 55m3/d 增加到 62m3/d 增加幅度不大,在 4%13%之间。关键词:地下水封洞库 涌水量 数值模拟 FEFELOWEstimation of Water Inflow into Underground Water Sealed Storage C
10、averns: Take Yantai Underground Water-sealing (LPG) Caverns For InstanceABSTRACTGroundwater sealed caverns is composed by rocks and groundwater occurrence in the formation of a pressure vessel. It is based on a special project - typical geological engineering geological body to make building materia
11、ls, the construction of the built environment to the geological environment. Compared with the above-ground repository, appropriate areas of the geological conditions, underground storage with high safety, especially the cultivated, investment, pollution, protect the environment, save steel, long li
12、fe and other advantages. Today, most of the groundwater the sealed caverns used to store oil, there is a small section for storing liquid or gaseous chemical raw materials.The key of guarantee cavern construction safety and long-term safe and stable operation of the key is to control the water seal,
13、 how accurate forecast cavern construction and the different stages of the long-running water inflow, direct impact on the underground structure of the program, construction and operation safety and construction cost . Being used for prediction the underground cavern Bay water simulation method, ana
14、lytical method and numerical simulation analysis method. This article will use the numerical simulation method to predict water sealed underground cavern group in the construction and operation of water inflow, combined with specific engineering analysis of the accuracy of the model simulation resul
15、ts of the hydrogeological model of water inflow to the underground cavern project forecast work to make reasonable suggestions.Water sealed LPG (liquefied petroleum gas) cavern of engineering construction in China has just started, there is no successful experience for reference, this specific proje
16、ct, for example, how to use the numerical simulation method on the water inflow forecast, prediction of water inflow for future groundwater sealed caverns engineering can also provide a reference.The study area is located in Yantai City, Shandong Province, the lithology of the study area for the Yan
17、shan a containing coarse-grained biotite granite, the major groundwater there is a type of Quaternary pore water and bedrock fissure water. The water sealed liquefied petroleum gas repository is currently the largest storage capacity, the liquefied hydrocarbon groundwater the sealed caverns design c
18、apacity of 1,000,000 m, according to the different storage media is divided into three holes library, of liquefied propane library of 500,000 m3 liquefied butane library 250,000 m, 250,000 m LPG library, the main underground works include nine main cavern, 4 shafts, 10 water curtain roadway, traffic
19、 roadway. Cave construction site, the width is about 750m,length is about 1000m.Yantai underground water-sealing (LPG) caverns, for example, to predict the use of numerical simulation method to do this the Inflow size of the project construction period and the post-operation period. The paper work f
20、irst began from the field survey work, field survey work consisted primarily of groundwater level measurements, model boundary reconnaissance survey record of groundwater seasonal fluctuations, river water levels, flow rate and flow measurement. The accuracy of the field first-hand information is ve
21、ry important, directly affects the accuracy and reliability of the results of the model simulation. The necessary hydrogeological testing on the proving ground floor, hydrogeological tests including carrying water and resume testing, water testing, water pressure test, through a series of hydrogeolo
22、gical test can determine the model parameters, including permeability coefficient and rainfall infiltration coefficient. The use of three-dimensional groundwater modeling software-FEFLOW software to use to determine the good simulation area, the model stratification, boundary conditions, the model p
23、arameters and other data, a mathematical model. First, the establishment of a good mathematical model to simulate the natural flow field, and the results compared with the water level of the water levels in boreholes and hydrogeological survey points, simulation and accuracy of the calibration model
24、. At the same time, the natural simulate the flow field results can be used as a model of the construction of the initial flow field. And then based on the design of the construction period, the different stages of construction, and post-operation period to establish a corresponding mathematical mod
25、el simulation. Water balance analysis, the results of the model runs come cavern daily water inflow and water curtain system fill water daily. ArcGIS spatial analysis software model to simulate the different stages of seepage and natural seepage field, draw the size and scope of the different stages
26、 of depression cones.By a series of work, we can get the following conclusions:1.The majority of drilling average permeability coefficient values between the 10-410-5m/d. Permeability coefficient for the underground caverns class project requirements, the scope of the order of magnitude smaller, wat
27、er-sealed condition so I can get the basic guarantee.2.Consolidated pre hydrogeological data, the establishment of the reservoir area of three-dimensional groundwater flow model and using the measured water level data to verify the model, was well fitted parameters and seepage field can be used for
28、subsequent holes library construction, operation simulation of seepage field.3.Fitting model, the construction and operation of water inflow and water curtain fill water simulation and prediction. Each stage of the construction of the largest water inflow ranged from 94.4 to 316.9m3/d, and stable wa
29、ter inflow ranged from 63 to 439m3/d water curtain fill water ranged from 72.3 to 287.6m3/d during the construction period.4.at each stage of the construction period are the initial water inflow is relatively large, while the latter part of gushing water quantity is small and stabilize. This is due
30、in the early stages of construction, the cave at the top of the head, and then the hydraulic gradient is relatively large, so the hole library Inflow, as the construction progresses, storage cavern above the head the hole library gushing and the hydraulic gradient is reduced, so the water inflow dec
31、reases.5.the operation period cavern Inflow after a temporary decline that will soon reach a steady, stable value of approximately 327.9m3/d water curtain fill water to stabilize after a brief rise, the stable value of about 267 m3/d.6.after operation period model with faults and joints intensive, t
32、he water inflow of the three libraries have been increased slightly, butane Library stable water inflow from 133m3/d to 141m3/d LPG library stable water inflow from 136m3/d increased to 142m3/d, the stability of the propane library Inflow from 55m3/d to 62m3/d increase marginally in the range of 4%
33、to 13%.Keywords: water sealed caverns, water inflow, numerical simulation, FEFLOW目 录第一章 绪 论 .11.1 选题目的及意义 .11.2 地下水封石油洞库储油原理 .11.3 国内外研究现状 .21.3.1 地下水封洞库现状 .21.3.2 国内外预测涌水量的一般方法 .21.4 研究内容与方法 .51.4.1 研究目标 .51.4.2 研究内容 .51.4.3 本文的创新点 .61.4.4 研究方法、技术路线 .6第二章 研究区概况 .72.1 项目概况 .72.2 自然地理概况 .82.2.1 地理位置及
34、交通条件 .82.2.2 气象水文信息 .92.3 工程地质及构造概况 .102.3.1 地层岩性特征 .102.3.2 地质构造特征 .112.3.3 地震与区域稳定性 .132.4 水文地质条件 .142.4.1 地下水赋存条件及分布规律 .142.4.2 地下水水位及动态特征 .152.4.3 地下水补给、径流与排泄条件 .182.4.4 各含水层水力联系分析 .182.4.5 水文地质试验 .202.4.6 岩体渗透性空间特征分析 .25第三章 研究区地下水流数值模型 .283.1 水文地质模型概化 .283.2 数学控制方程 .293.3 数值模型的刻画 .303.3.1 模型空间离
35、散化 .303.3.2 初始水文地质参数 .313.3.3 模型初始条件及边界条件 .313.3.4 模型校验 .313.4 库区天然渗流场特征及分析 .34第四章 数值模拟法预测涌水量 .354.1 施工期及运营期模型概化 .354.1.1 洞室及水幕边界条件刻画 .354.1.2 施工期与运营期时间离散化 .354.2 涌水量大小及渗流场变化预测 .364.2.1 施工期涌水量大小及渗流场变化预测 .364.2.2 运营期涌水量大小及渗流场变化预测 .384.3 水均衡计算 .414.4 断层及节理密集带对涌水量的影响 .414.4.1 断层及节理密集带 .414.4.2 断层及节理密集带刻画方法 .