2.1平面向量的实际背景及基本概念教学设计高一B7一、教材分析:向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用.向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景.向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的.本节从物理学中的速度、力等既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度(模)、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本课包括“章引言”和“平面向量的实际背景及基本概念”两部分,是“平面向量”的概念课,具有“统领全局”的作用.不仅要让学生理解向量的形式化定义及几个相关概念,而且能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力.