傅里叶变换和拉普拉斯变换的性质及应用1前言1.1 背景利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变换。分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。可以当做信号的成分的波形有很多,例如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的成分。拉普拉斯变换最早由法国数学家天文学家PierreSimonLaplace(拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在他的著名作品概率分析理论之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的OliverHeaviside奥利弗亥维赛(1850-1925)在