1、管道及储罐强度设计(第二次) 改动的地方 :简答题第三题,计算题第一题,计算题第十一题 名词解释 1.工作压力 在正常操作条件下,容器可能达到的最高压力 2材料强度 是指载荷作用下材料抵抗永久变形和断裂的能力。屈服点和抗拉强度是钢材常用的强度判据。 3储罐的小呼吸 罐内储液 (油品 )在没有收、发作业静止储存情况下,随着环境气温、压力在一天内昼夜周期变化,罐内气相温度、储液 (油品 )的蒸发速度、蒸气 (油气 )浓度和蒸气压力也随着变化,这种排出或通过呼吸阀储液蒸气 (油气 )和吸入空气的过程 叫做储罐的小呼吸 4.自限性 局部屈服或小量塑性变形就可以使变形连续条件得到局部或全部的满足,塑性变
2、形不再继续发展并以此缓解以致完全消除产生这种应力的原因。 5无力矩理论 (薄膜理论 ) 假定壁厚与直径相比小得多,壳壁象薄膜一样,只能承受拉 (压 )应力弯曲内力的影响,而不能承受弯矩和弯曲应力,或者说,忽略这样计算得到的应力,称薄膜应力。 6壳体中面 壳体厚度中点构成的曲面,中面与壳体内外表面等距离。 7安全系数 考虑到材料性能、载荷条件、设计方法、加工制造和操作等方面的不确定因素而确定的质量保证系数。 8容器最小壁厚 由刚 度条件确定,且不包括腐蚀裕量的最小必须厚度。 (1) 对碳素钢、低合金钢制容器: (2) 对高合金钢制容器: 不小于 2mm (3) 对封头: 9.一次应力 一次应力
3、:由于压力和其他机械荷载所引起与内力、内力矩平衡所产生的,法向或切向应力,随外力荷载的增加而增加。 10.储罐的小呼吸损耗 罐内储液 (油品 )在没有收、发作业静止储存情况下,随着环境气温、压力在一天内昼夜周期变化,罐内气相温度、储液 (油品 )的蒸发速度、蒸气 (油气 )浓度和蒸气压力也随着变化,这种排出或通过呼吸阀储液蒸气 (油气 )和吸入空气的过程所造成的储液 (油品 )损耗称作储罐小呼吸损耗 11耦联振动周期和波面晃动周期 耦联振动周期:罐内液体和储罐结合在一起的第一振动周期。 波面晃动周期:罐内储液的晃动一次的时间 12压力容器工艺设计 工艺设计 1.根据原始参数和工艺要求选择容器形
4、式,要求能够完成生产任务、有较好的经济效益 ; 2.通 过工艺计算确定主要尺寸。 13机械设计 机械设计 1.受力部件应力分析、选材,确立具体结构形式、强度计算、确定各部件结构尺寸 ; 2.绘制容器及其零部件的施工图。 14韧性 指材料断裂前吸收变形能量的能力,材料韧性一般随着强度的提高而降低。 15刚度 是过程设备在载荷作用下保持原有形状的能力,刚度不足是过程设备过度变形的主要原因之一。 16.最低设计温度 所谓储罐的最低设计温度是指储罐最低金属温度。它是指设计最低使用温度与充水试验时的水温两者中的较低值。设计最低使用温度是取建罐地区的最低日平均温度加 13 o 设计温度低于 -20的特殊情
5、况,必须考虑低温对材料性能、结构形式等方面的影响。设计温度等于低于 -20的储罐,应当按照低温储罐设计,设计温度的下限由特定的工况确定。 17.薄膜应力 沿截面均匀分布的应力,平均应力。 18.弯曲应力 梁、板等结构弯曲产生的应力 。 19.结构不连续应力 结构不连续区域满足变形协调条件产生的应力 。 20.有力矩理论 认为壳体虽然很薄,但仍有一定的厚度和刚度,因而壳体除拉 (压 )应力,外还存在弯矩和弯曲应力,实际上,理想的薄壁壳体是不存在,即使壁很薄壳体中或多或少存在弯曲应 力。 21旋转薄壳 由回转曲面的中间面形成的壳体称为回转壳体。 经线:母线 在 旋转过程中的任一位置。 纬线:圆锥法
6、平面与旋转曲面的交线。 22名义厚度 指设计厚度加上钢材厚度负偏差向上圆整至钢材的标准规格厚度。即标注在图样上的厚度。 23设计压力 在设计温度下用以确定容器壳体厚度的压力,其值大于工作压力。 24计算压力 在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力。当元件所承受的液柱静压力小于 5%设计压力时,可忽略不计。 25安全系数 考虑到材料性能、载荷条件、设计方法、加工制造和操作等方面的不确定因素而确定的质量保证系数。 简答题 1. 简述油罐基础沉陷的类型及危害? ( 1)、均匀沉陷 沉陷只有达到很严重的程度时才会造成损坏 ( 2)、整体倾斜不均匀沉陷 当油罐倾斜时,油面处的平面
7、变成椭圆的。对于机械密封浮顶油罐,其调节量较小,可能会把浮船卡住。如采用软密封时,一般不存在这个问题。 ( 3)、盘形不均匀沉陷 罐底周边的沉降量比中心沉降量一般要小 30% 40%,这种沉陷也不造成真正威胁 ( 4)、壁板周边的不均匀沉陷 ( 5)、壁板周边的局部沉陷 此两类沉陷是最危险的沉陷类型。由于罐壁在垂直方向的刚性是很大的,当下部基础沉陷时就会使罐底与罐壁间的角缝和罐底的边缘板受力状况急剧恶化。 2. 简述浮顶油罐浮顶设计必的四个准则。 第一准则的要求:单盘板和任意两个相邻舱室同时破裂(泄露)时浮顶不沉没。 ( 1)下沉深度不大于外边缘板的高度,且有一定裕量。 可用下式表达: 3b
8、T T 式中 3b -外边缘板的高度, m; T -当 a=0时的下沉深度, m; T -由于 a 0而引起的浸没深度的增加量, m; -安全裕量, m; ( 2)下沉深度不大于内边缘板高度,且应留有一定裕量。 可用下式表示: 1b T T g 式中: 1b -内边缘板的高度, m; g 浮船尺寸, m; 第二准则是在整个罐顶面积上有 250mm深的雨水积存在单盘上时浮顶不沉没。 第三准则为在操作时单盘与储液之间不存在油气空间 单盘的安装高度 C应满足以下条件: min maxC C C (上下限) 浮顶的强度及稳定性校核(第四准则) 浮顶除符合前三个准则的要求外,还要保证在上述条件下,浮顶不
9、会因强度不够而破坏,也不会因失去稳定而失效 。 3. 简述地震对油罐的破坏效应有哪些,简要分析破坏效应产生的原因。 (1)油罐壁板最下一层局部外凸 由于地震时在水平加速度的作用下,由于倾倒力矩造成罐壁一侧的压应力超过其临界压应力值,罐壁屈曲造成的 (2) 罐壁与罐底间角焊缝开裂 地震时水平加速度作用下水平惯性力使角焊缝中的剪应力超过其剪切强度极限 (3)罐壁板最下一层沿圆周形成圆环状凸出 由于总体弯曲或结构的梁式作用产生的过大轴向压力所引起壳体失稳,罐内液体晃动,可以在罐壁中引起异常大的应力,损坏开始的现象之一是沿罐壁上的象足凸鼓 ( 4) 罐顶破坏 油罐在液位较高的情况下,在地震时由于液面剧
10、烈晃动,浮顶导向杆失灵,扶梯破坏,浮顶来回碰撞,最终导致浮顶沉没。 (5)油罐局部或整体下沉 地震时油罐基础液化 , 滑坡 。 (6)管道接头的破坏 地震时储罐与管道之间的运动不一致 4. 外浮顶罐有哪些附件,并简述各附件的功能? (1) 中央排水管 中央排水管是由若干段浸没于油品中的 Dg 100 的金属软管。排水管上端,以免一旦排水管或接头有泄漏时,储液从排水管倒流到浮顶上来。根据油罐直径的大小,每个罐内可以设 1 - 3 根排水管。 (2) 转动扶梯 浮顶上升到最高位置时,转动扶梯不会与浮顶上任何附件相碰,当浮顶下降到最低位置时,转动扶梯的仰角不大于 60 度,在浮顶升降的过程中转动扶梯
11、的踏步应能自动保持水平。扶梯处于任何位置时,都能承受 5 KN 集中荷载。 (3) 浮顶立柱 浮顶立柱是环向分布安装于浮顶下部的支柱,其高度一般可在1.2m-1.8m范围内调节。设置浮顶立柱的目的有二 : 一是避免浮顶与罐内附件相碰撞。 二是便于检修人员由人孔进入罐底与浮顶之间的空间内进行检修或清扫作业。 (4) 自动通气阀 自动通气阀作用有二 : 一是发油避免浮顶下出现真空,以免将浮顶压坏。 二是收油避免在浮顶与液面间出现空气层。 (4) 紧急排水口 单盘边缘处 (位置通过计算确定 )有时还设置紧急排水口。 (5) 舱室人孔 每个舱室应设置船舱人孔,人孔直径不小于 500mm。人孔应设有不会被大风吹开的轻型防雨盖,人孔接管上端应高出浮顶的允许积水高度。浮顶上至少应设置一个最小公称直径为 600mm的人孔,以便油罐排空后在检修时进行通风、透光和便于检修人员的出入。 (7) 导向支柱(无) 5. 用图示法表示壁厚的概念(计算厚度、设计厚度、名义厚度、有效厚度和毛坯件厚度),将符号标注正确。 6. 压力容器设计需满足的基本要求? 基本要求 : (1) 足够强度 (2) 足够刚度 (稳定性 ) (3) 一定的耐久性 (10 -12年,高压容器 20年,油罐大于等于 20年 ) (4) 可靠的密封性 (5) 节约材料、制造方便 (6) 运输操作方便