1、北京时代 新天 科贸有限公司 电话: 010-69552791 1 太阳能光伏技术详解 1太阳能概况 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。 二十世纪 50 年代,太 阳能利用领域出现了
2、两项重大技术突破:一是 1954 年美国贝尔实验室研制出 6的实用型单晶硅电池,二是 1955 年以色列 Tabor 提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。 70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。 1973 年,美国制定了政府级的阳光发电计划, 1980 年又正式将光伏发电列入公共电力规划,累计投入达 8亿多美元。 1992 年,美国政府颁布了新的光伏发电计划,制定了 宏伟的发展目标。日本在 70 年代制定了“阳光计划”, 1993 年将“月光计
3、划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。 90 年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。 自“六五”以来我国政府一直把研究开发太阳能和可再生能 源技术列入国家科技攻关计划,大大推动了我国太阳能和可再生能源技术和产业的发展。 二十多年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长
4、足发展,成为世界快速、稳定发展的新兴产业之一。 北京时代 新天 科贸有限公司 电话: 010-69552791 2 2光伏效应 光生伏特效应简称为光伏效应,指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。 产生这种电位差的机理有好几种,主要的一种是由于阻挡层的存在。以下以P-N 结为例说明。 热平衡态下的 P-N 结 P-N 结的形成: 同质结可用一块半导体经掺杂形成 P 区和 N 区。由于杂质的激活能量 E很小,在室温下杂质差不多都电离成受主离子 NA-和施主离子 ND+。在 PN 区交界面处因存在载流子的浓度差,故彼此要向对方扩散。设想在结形成的一瞬间,在N 区的电子
5、为多子,在 P 区的电子为少子,使电子由 N 区流入 P 区,电子与空穴相遇又要发生复合,这样在原来是 N区的结面附近电子变得很少,剩下未经中和的施主离子 ND+形成正的空间电荷。同样,空穴由 P 区扩散到 N 区后,由不能运动的受主离子 NA-形成负的空间电荷。在 P 区与 N 区界面两侧产生不能移动的离子区(也称耗尽区、空间电荷区、阻挡层),于是出现空间电偶层,形成内电场(称内建 电场)此电场对两区多子的扩散有抵制作用,而对少子的漂移有帮助作用,直到扩散流等于漂移流时达到平衡,在界面两侧建立起稳定的内建电场。 P-N 结能带与接触电势差: 在热平衡条件下,结区有统一的 EF;在远离结区的部
6、位, EC、 EF、 E之间的关系与结形成前状态相同。 从能带图看, N 型、 P型半导体单独存在时, EFN 与 EFP 有一定差值。当 N型与 P 型两者紧密接触时,电子要从费米能级高的一方向费米能级低的一方流动,空穴流动的方向相反。同时产生内建电场,内建电场方向为从 N 区指向 P区。在内建电场作用下, EFN 将连同整个 N区能 带一起下移, EFP 将连同整个 P区能带一起上移,直至将费米能级拉平为 EFN=EFP,载流子停止流动为止。在结区这时导北京时代 新天 科贸有限公司 电话: 010-69552791 3 带与价带则发生相应的弯曲,形成势垒。势垒高度等于 N 型、 P 型半导
7、体单独存在时费米能级之差: qUD=EFN-EFP 得 UD=(EFN-EFP)/q q:电子电量 UD:接触电势差或内建电势 对于在耗尽区以外的状态: UD=(KT/q)ln(NAND/ni2) NA、 ND、 ni:受主、施主、本征载流子浓度。 可见 UD 与掺杂浓度有关。在一定温度下, P-N 结两边掺杂浓度越高, UD越大。 禁带宽的材料, ni 较小,故 UD 也大。 光照下的 P-N结 P-N 结光电效应: 当 P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子。但能引起光伏效应的只能是本征吸收所激发的少数载流子。因 P 区产生的光生空穴, N 区产生的光生电子
8、属多子,都被势垒阻挡而不能过结。只有 P 区的光生电子和 N 区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。光生电子被拉向 N 区,光生空穴被拉向 P 区,即电子空穴对被内建电场分离。这导致在 N区边界附近有光生电子积累,在 P区边界附近有光生空穴积累。它们产生一个 与热平衡 P-N结的内建电场方向相反的光生电场,其方向由 P 区指向 N 区。此电场使势垒降低,其减小量即光生电势差, P 端正, N端负。于是有结电流由 P 区流向 N区,其方向与光电流相反。 实际上,并非所产生的全部光生载流子都对光生电流有贡献。设 N区中空穴在寿命 p 的时间内扩散距离为
9、 Lp, P 区中电子在寿命 n 的时间内扩散距离为Ln。 Ln+Lp=L 远大于 P-N 结本身的宽度。故可以认为在结附近平均扩散距离 L 内所产生的光生载流子都对光电流有贡献。而产生的位置距离结区超过 L的电子空穴对,在扩散过程中将全部复合掉,对 P-N结光电效应 无贡献。 北京时代 新天 科贸有限公司 电话: 010-69552791 4 光照下的 P-N结电流方程: 与热平衡时比较,有光照时, P-N 结内将产生一个附加电流(光电流) Ip,其方向与 P-N结反向饱和电流 I0相同,一般 Ip I0。此时 I=I0eqU/KT - (I0+Ip) 令 Ip=SE,则 I=I0eqU/K
10、T - (I0+SE) 开路电压 Uoc: 光照下的 P-N结外电路开路时 P端对 N端的电压,即上述电流方程中 I=0 时的 U 值: 0=I0eqU/KT - (I0+SE) Uoc=(KT/q)ln(SE+I0)/I0 (KT/q)ln(SE/I0) 短路电流 Isc: 光照下的 P-N结,外电路短路时,从 P端流出,经过外电路,从 N端流入的电流称为短路电流 Isc。即上述电流方程中 U=0 时的 I值,得 Isc=SE。 Uoc 与 Isc 是光照下 P-N结的两个重要参数,在一定温度下, Uoc 与光照度 E成对数关系,但最大值不超过接触电势差 UD。弱光照下, Isc 与 E有线
11、性关系。 a)无光照时热平衡态, NP 型半导体有统一的费米能级,势垒高度为qUD=EFN-EFP。 b)稳定光照下 P-N 结外电路开路,由于光生载流子积累而出现光生电压 Uoc不再有统一费米能级,势垒高度为 q(UD-Uoc)。 c)稳定光照下 P-N 结外电路短路, P-N结两端无光生电压,势垒高度为 qUD,光生电子空穴对被内建电场分离后流入外电路形成短路电流。 d)有光照有负载,一部分光电流在负载上建立起电压 Uf,另一部分光电流被P-N 结因正向偏压引起的正向电流抵消,势垒高度为 q(UD-Uf)。 3太阳能电池 电池行业是世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没北京时
12、代 新天 科贸有限公司 电话: 010-69552791 5 有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳的光辉普照大地,它是明亮的使者,太阳的光除了照亮世界,使植物通过光合作用把太阳光转变为各种养分,供人们食用,产生纤维质供人们做衣服,生长木材给我们 建筑房屋以外,太阳的光还可以通过太阳能电池转变为电。太阳能电池是一种近年发展起来的新型的电池。太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件,这种光电转换过程通常叫做“光生伏打效应”,因此太阳能电池又称为“光伏电池”,用于太阳能电池的半导体材料是一种介于导体和绝
13、缘体之间的特殊物质,和任何物质的原子一样,半导体的原子也是由带正电的原子核和带负电的电子组成,半导体硅原子的外层有 4个电子,按固定轨道 围绕原子核转动。当受到外来能量的作用时,这些电子就会脱离轨道而成为自由电子,并在原来的位置上留下一个“空穴”,在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体中掺入硼、镓等元素,由于这些元素能够俘获电子,它就成了空穴型半导体,通常用符号 P 表示;如果掺入能够释放电子的磷、砷等元素,它就成了电子型半导体,以符号 N代表。若把这两种半导体结合,交界面便形成一个 P N 结。太阳能电池的奥妙就在这个“结”上, P N结就像一堵墙,阻碍着电子和空穴的移
14、动。当太阳能电池受到阳光照射时,电子接受光能,向 N型区移动,使 N 型区带负电,同时空穴向 P 型区移动,使 P 型区带正电。这样,在 P N结两端便产生了电动势,也就是通常所说的电压。这种现象就是上面所说的“光生伏打效应”。如果这时分别在 P型层和 N型层焊上金属导线,接通负载,则外电路便有电流通过,如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。 1953 年美国贝尔研究所首先应用这个原理试制成功硅太阳电池,获得 6%光电转换效
15、率的成 果。太阳能电池的出现,好比一道曙光,尤其是航天领域的科学家,对它更是注目。这是由于当时宇宙空间技术的发展,人造地球卫星上天,卫星和宇宙飞船上的电子仪器和设备,需要足够的持续不断的电能,而且要求重量轻,北京时代 新天 科贸有限公司 电话: 010-69552791 6 寿命长,使用方便,能承受各种冲击、振动的影响。太阳能电池完全满足这些要求, 1958 年,美国的“先锋一号”人造卫星就是用了太阳能电池作为电源,成为世界上第一个用太阳能供电的卫星,空间电源的需求使太阳电池作为尖端技术,身价百倍。现在,各式各样的卫星和空间飞行器上都装上了布满太阳能电池的“翅膀”,使它们能够在 太空中长久遨游
16、。我国 1958 年开始进行太阳能电池的研制工作,并于 1971 年将研制的太阳能电池用在了发射的第二颗卫星上。以太阳能电池作为电源可以使卫星安全工作达 20 年之久,而化学电池只能连续工作几天。 空间应用范围有限,当时太阳电池造价昂贵,发展受到限。 70 年代初,世界石油危机促进了新能源的开发,开始将太阳电池转向地面应用,技术不断进步,光电转换效率提高,成本大幅度下降。时至今日,光电转换已展示出广阔的应用前景。 太阳能电池近年也被人们用于生产、生活的许多领域。从 1974 年世界上第一架太阳能电池飞机在美国首次 试飞成功以来,激起人们对太阳能飞机研究的热潮,太阳能飞机从此飞速地发展起来,只用
17、了六七年时间太阳能飞机从飞行几分钟,航程几公里发展到飞越英吉利海峡。现在,最先进的太阳能飞机,飞行高度可达2 万多米,航程超过 4000 公里。另外,太阳能汽车也发展很快。 在建造太阳能电池发电站上,许多国家也取得了较大进展。 1985 年,美国阿尔康公司研制的太阳能电池发电站,用 108 个太阳板, 256 个光电池模块,年发电能力 300 万度。德国 1990 年建造的小型太阳能电站,光电转换率可达 30多,适于为家庭和团体供电。 1992 年美国加州公 用局又开始研制一种“革命性的太阳能发电装置”,预计可供加州 1 3 的用电量。用太阳能电池发电确实是一种诱人的方式,据专家测算,如果能把
18、撒哈拉沙漠太阳辐射能的 1收集起来,足够全世界的所有能源消耗。 在生产和生活中,太阳能电池已在一些国家得到了广泛应用,在远离输电线路的地方,使用太阳能电池给电器供电是节约能源降低成本的好办法 。芬兰制成了一种用太阳能电池供电的彩色电视机,太阳能电池板就装在住家的房顶上,还配有蓄电池,保证电视机的连续供电,既节省了电能又安全可靠。日本则侧重把太阳能电池应用于汽车的自动换气装置、空 调设备等民用工业。我国的一些电视差北京时代 新天 科贸有限公司 电话: 010-69552791 7 转台也已用太阳能电池为电源,投资省,使用方便,很受欢迎。 当前,太阳能电池的开发应用已逐步走向商业化、产业化;小功率
19、小面积的太阳能电池在一些国家已大批量生产,并得到广泛应用;同时人们正在开发光电转换率高、成本低的太阳能电池;可以预见,太阳能电池很有可能成为替代煤和石油的重要能源之一,在人们的生产、生活中占有越来越重要的位置。 4多晶硅及其他光电转换材料 光伏效应 现代工业的发展,一方面加大对能源的需求,引发能源危机;另一方面在常规能源的使用中释放出大量的二氧化碳气体,导 致全球性的“温室效应”。为此各国力图摆脱对常规能源的依赖,加速发展可再生能源。作为最理想的可再生能源,太阳能具有“取之不尽,用之不竭”的特点,而利用太阳能发电具有环保等优点,而且不必考虑其安全性问题。所以在发达国家得到了高度重视,欧洲联盟国
20、家计划在年太阳能光电转换的电力占所有总电力的 1.5,美国启动了“百万屋顶”计划。在能源短缺,环境保护问题日益严重的我国,低成本高效率地利用太阳能尤为重要。 太阳能电池就是利用光伏效应将太阳能直接转换为电能的一种装置。常规太阳电池简单装置如图 1 所示。当 N 型和 P 型两 种不同型号的半导体材料接触后,由于扩散和漂移作用,在界面处形成由 P 型指向 N型的内建电场。当光照在太阳电池的表面后,能量大于禁带宽度的光子便激发出电子和空穴对,这些非平衡的少数载流子在内电场的作用下分离开,在电池的上下两极累积,这样电池便可以给外界负载提供电流。 从本世纪 70 年代中期开始了地面用太阳电池商品化以来
21、,晶体硅就作为基本的电池材料占据着统治地位,而且可以确信这种状况在今后 20 年中不会发生根本的转变。以晶体硅材料制备的太阳能电池主要包括:单晶硅太阳电池,铸造多晶硅太阳能电池,非晶硅太阳能电池和薄膜晶体 硅电池。单晶硅电池具有电池转换效率高,稳定性 好,但是成本较高;非晶硅太阳电池则具有生产效率高,成本低廉,而且转换效率、效率衰减与单晶硅电池相似,所以非晶硅太阳能电池 性能价北京时代 新天 科贸有限公司 电话: 010-69552791 8 格比最高;薄膜 非 晶体硅太阳能电池 国内外已经研究成功,正逐步进入商业化 阶段。目前,铸造多晶硅太阳能电池已经取代直拉单晶硅成为最主要的光伏材料。但是
22、铸造多晶硅太阳能电池的转换效率略低于直拉单晶硅太阳能电池,材料中的各种缺陷,如晶界、位错、微缺陷,和材料中的杂质碳和氧,以及工艺过程中玷污的过渡族金属被认为是电池转换效率较低的关键原因,因此关于铸造 多晶硅中缺陷和杂质规律的研究,以及工艺中采用合适的吸杂,钝化工艺是进一步提高铸造多晶硅电池的关键。另外,寻找适合铸造多晶硅表面织构化的湿化学腐蚀方法也是目前低成本制备高效率电池的重要工艺。 从固体物理学上讲,硅材料并不是最理想的光伏材料,这主要是因为硅是间接能带半导体材料,其光吸收系数较低,所以研究其他光伏材料成为一种趋势。其中,碲化镉 (CdTe)和铜铟硒 (CuInSe2)被认识是两种非常有前
23、途的光伏材料,而且目前已经取得一定的进展,但是距离大规模生产,并与晶体硅太阳电池抗衡需要大量的工作去做。 5晶体 硅太阳电池及材料 引言 1839 年,法国 Becqueral 第一次在化学电池中观察到光伏效应。 1876 年,在固态硒( Se)的系统中也观察到了光伏效应,随后开发出 Se CuO 光电池。有关硅光电他的报道出现于 1941 年。贝尔实验室 Chapin 等人在 1954 年开发出效率为6的单晶硅光电池,现代硅太阳电池时代从此开始。硅太阳电他于 1958 年首先在航天器上得到应用。在随后 10 多年里,硅太阳电池在空间应用不断扩大,工艺不断改进,电他设计逐步定型。这是硅太阳电池
24、发展的第一个时期。第二个时期开始于 70 年代初,在这个时期背表 面场、细栅金属化、浅结表面扩散和表面织构化开始引人到电池的制造工艺中,太阳电池转换效率有了较大提高。与此同时,硅太阳电池开始在地面应用,而且不断扩大,到 70 年代未地面用太阳电池产量已经超过空间电池产量,并促使成本不断降低。 80 年代初,硅太阳电他进入快速发展的第三个时期。这个时期的主要特征是把表面钝化技术、降低接触复合效应、后处理提高载流子寿命、改进陷光效应引入到电他的制造工艺中。以各种高效电北京时代 新天 科贸有限公司 电话: 010-69552791 9 池为代表,电池效率大幅度提高,商业化生产成本进一步降低,应用不断
25、扩大。 在太阳电他的整个发展历程中,先后出现过各种不 同结构的电池,如肖特基( Ms)电池, M1S 电池, MINP 电他;异质结电池(如 ITO( n) Si( p), a-Sic-Si, Ge Si)等,其中同质 p-n 结电池结构自始至终占主导地位,其它结构对太阳电他的发展也有重要影响。 以材料区分,有晶硅电池,非晶硅薄膜电池,铜钢硒( CIS)电池,磅化镐( CdTe)电池,砷化稼电他等,而以晶硅电池为主导,由于硅是地球上储量第二大元素,作为半导体材料,人们对它研究得最多、技术最成熟,而且晶硅性能稳定、无毒,因此成为太阳电池研究开发、生产和应用中的主体材料。 1 晶硅电他的 技术发展
26、 1 1地面应用推动各种新型电池的出现和发展 晶硅电池在 70 年代初引入地面应用。在石油危机和降低成本的推动下,太阳电池开始了一个蓬勃发展时期,这个时期不但出现了许多新型电池,而且引入许多新技术。例如: ( 1)背表面电场( BSF)电池 在电他的背面接触区引入同型重掺杂区,由于改进了接触区附近的收集性能而增加电他的短路电流;背场的作用可以降低饱和电流,从而改善开路电压,提高电池效率。 ( 2)紫光电他一一这种电池最早( 1972)是为通信卫星开发的。因其浅结( 0 1一 0 2?m)密栅( 30 cm)、减 反 射( Ta2O5 短波透过好)而获得高效率。在一段时间里,浅结被认为是高效的关
27、键技术之一而被采用。 ( 3)表面织构化电池 也称绒面电池,最早( 1974)也是为通讯卫星开发的。其 AM0 时电池效率 15, AMI 时 18。这种技术后来被高效电他和工业化电池普遍采用。 ( 4)异质结太阳电池 即不同半导体材料在一起形成的太阳电池 J瞩 SnO Si, In20 Si,( 1n203 十 SnO2 Si 电池等。由于 SnO2、 In2O3、( In2O3 SnO2)等带隙宽,透光性好,制作电池工艺简单,曾引起许多研究者的兴 趣。目前因效率不高等问题研究者已不多,但 SnO2、 In2O3、( 1n2O3 SnO2)是许多薄膜电他的重要构成部分,作收集电流和窗口材料用
28、。 北京时代 新天 科贸有限公司 电话: 010-69552791 10 ( 5) M1S 电池 是肖特基( MS)电他的改型,即在金属和半导体之间加入1 5 一 3 0nm 绝缘层,使 MS电池中多子支配暗电流的情况得到抑制,而变成少子隧穿决定暗电流,与 pn 结类似。 其中 i 层起到减少表面复合的作用。经过改进的 M1S 电池正面有 20 一 40?m的 SiO2 膜,在膜上真空蒸发金属栅线,整个表面再沉积 SiN 薄膜。 SiN 薄膜的作用是:保护电池,增加耐候性;作为 减反射层( ARC);降低薄膜复合速度:在 p-型半导体一侧产生一个 n型导电反型层。对效率产生决定性影响的是在介电
29、层中使用了银。该电池优点是工艺简单,但反型层的薄层电阻太高。 ( 6) MINP 电池 可以把这种电池看作是 M1S 电池和 p 一 n 结的结合,其中氧化层对表面和晶界复合起抑制作用。这种电池对后来的高效电池起到过渡作用。 ( 7)聚光电池 聚光电他的特点是电池面积小,从而可以降低成本,同时在高光强下可以提高电池开路电压,从而提高转换效率,因此聚光电池一直受到重视。比较典型的聚光电池是斯但福大学的点接触聚电池, 其结构与非聚光点接触电池结构相同,不同处是采用 200 cm 高阻 n 型材料并使电池厚度降低到 100一 160tLm,使体内复合进一步降低。这种电池在 140 个太阳下转换效率达
30、到26 5。 1 2晶硅太阳电池向高效化和薄膜化方向发展 晶硅电池在过去 20 年里有了很大发展,许多新技术的采用和引入使太阳电池效率有了很大提高。在早期的硅电池研究中,人们探索各种各样的电池结构和技术来改进电池性能,如背表面场,浅结,绒面,氧化膜钝化, Ti Pd 金属化电极和减反射膜等。后来的高效电池是在这些早期实验和理论基础上的发展起来的。 1 2 1单晶硅高效电池 单晶硅高效电池的典型代表是斯但福大学的背面点接触电池( PCC),新南威尔士大学( UNSW)的钝化发射区电池( PESC, PERC, PERL 以及德国 Fraumhofer太阳能研究所的局域化背表面场( LBSF)电池等。