巧用“两线合一”构建且证明等腰三角形问题湖北省襄阳市樊城区牛首镇竹条一中李敬峰谷兴武学习了等腰三角形的三线合一后,笔者认为,可以根据学生的实际情况,补充“三线合一”的逆命题的教学,因为这种逆命题虽然不能作为定理用,但它在解题中非常常见的。掌握了它,可以为我们解题增加一种重要思路。它有以下几种形式:一边上的高与这边上的中线重合的三角形是等腰三角形(线段垂直平分线的性质)一边上的高与这边所对角的平分线重合的三角形是等腰三角形一边上的中线与这边所对角的平分线重合的三角形是等腰三角形.因此,三角形“一边上的高、这边上的中线及这边所对角的平分线”三线中“两线合一”就能证明它是等腰三角形为了便于记忆,笔者简言之:两线合一,必等腰。本文重点利用该逆命题作为一种思路正确地添加辅助线,构建等腰三角形且证明之来解决问题。一、我们先来证明“三线合一”性质的逆命题三种情形的正确性:证明:已知:如图1,ABC中,AD是BC边上的中线,又是BC边上的高。求
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。