运筹学计算题经典题型全攻略.doc

上传人:h**** 文档编号:1446612 上传时间:2019-02-27 格式:DOC 页数:12 大小:474KB
下载 相关 举报
运筹学计算题经典题型全攻略.doc_第1页
第1页 / 共12页
运筹学计算题经典题型全攻略.doc_第2页
第2页 / 共12页
运筹学计算题经典题型全攻略.doc_第3页
第3页 / 共12页
运筹学计算题经典题型全攻略.doc_第4页
第4页 / 共12页
运筹学计算题经典题型全攻略.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、1第二章 预测2.3 时间序列预测法一、滑动平均预测法1、简单滑动平均预测法:算数平均数(1)横向比较法:同一时间自己跟别人比【例题计算题】某新产品要确定其市场价格,同行参考价格为 1.5 元、1.2 元、0.9 元、0.7 元 0.5 元,则该产品价格可定为多少?【答案】我们可采用同行的平均数来作为我们的参考价格:元.520.97.5096x【解析】 横向比较法就是求平均数,用平均数作为参考。(2)纵向比较法:简单滑动平均预测法【例题计算题】上述电池厂在生产和销售该电池 6 个月后,得到前后顺序排列的 6 个出厂价格:1 元、1.1 元、1.1 元、1.2 元、1.2 元、1.3 元,试预测

2、第 7 个月的出厂价格,只参考就近三个月价格。【答案】 元1.2.312x【解析】 纵向比较法也是求平均数。二、加权平均预测法根据不同数值所占比重不同,在简单滑动平均预测法中加入相应权值即可加权平均数计算公式为: 12.nxwx三、指数平滑预测法指数平滑预测法的公式为:1()(1)ttttttFxFF其中: , t+1 期, t 期的预测值;1tt 期的实际值;x平滑系数。的取值范围一般为: ;当我们发现 t 期的预测值与实际值误差较大时,我们可以加大平滑系数01的值,若误差不大, 可取的小一些;在特殊情况下,即当商品的价格看涨或看跌时, 亦可取大于 1 的数。2.4 回归模型预测法二、一元线

3、性回归模型预测法设出回归方程: ;yabx确定系数:a,b 也称为回归模型的参数。系数确定的原则应用最小二乘法最小二乘法:寻求使误差平方和为最小的配合趋势线的方法。运用最小二乘法,得出系数的计算公式:22()nXYba求出回归方程后,根据题目中所给的某一变量的数据,带入即可求出另一变量的值。置信区间:实际值位于这个区间范围的概率应达到 95%以上,若大致符合正态分布,则置信区间为:。12iyS第三章 决 策2【例题计算题】某公司准备销售某新产品。拟定的价格有 A1、A2 、A3 三个方案,预计进入市场后可能的销售状况(自然状态)也有三种,收益值如表。试以最大最大决策标准作出该产品价格的决策选择

4、。【答案】用 最大最大决策标准决策如下:选择 A1 方案 作为决策方案。【解析】最大最大决策方案就是大中取大。【例题计算题】某月饼厂自销一种新月饼,每箱成本 40 元,售价 90 元,但当天卖不掉的产品要报废。据以往统计资料预计新月饼销售量的规律见下表: 需求数 100 箱 110箱120 箱 130 箱占的比例 0.2 0.3 0.4 0.1(1)今年每天应当生产多少箱可获利最大(2)具有精确情报时的收益【答案】 (1)编制决策收益表,并计算每种方案的期望值为:销售 100箱销售 110箱销售 120 箱 销售 130箱期望值 0.2 0.3 0.4 0.1生产 100 箱 5000 500

5、0 5000 5000 5000生产 110 箱 4600 5500 5500 5500 5320生产 120 箱 4200 5100 6000 6000 5370生产 130 箱 3800 4700 5600 6500 5060所以,由决策收益表中可以看出,当每天生产 120 箱时,可获利最大为 5370 元.(2)具备精确情报时,生产多少就能卖多少,不存在损失,因此收益表为销售 100箱销售 110箱销售 120 箱 销售 130箱期望值 0.2 0.3 0.4 0.1生产 100 箱 5000 1000生产 110 箱 5500 1650生产 120 箱 6000 2400生产 130

6、箱 3 6500 650最大期望收益 5700具备精确情报时,最大期望收益值为 5700 元。【解析】重点考察期望值的计算。销路较好 销路一般 销路较差较高价格出售 A1 18000 10000 6000中等价格出售 A2 16000 13000 8000较低价格出售 A3 12000 12000 12000销路较好 销路一般 销路较差 按行取最大值较高价格出售 A1 18000 10000 6000 18000中等价格出售 A2 16000 13000 8000 16000较低价格出售 A3 12000 12000 12000 12000按最后列取最大值 1800033.5 决策树决策树的基

7、本结构为:第四章 库存管理数学方法:由 库存费用=订货费+保管费= (年需要量/ 订货量) *一次订货费+平均库存量*单位物资保管费可推导出当 订货费=保管费 时库存总费用达到最低,带入已知数据可计算出经济订货量。其中平均库存量=订货批量的一半,平均库存额=平均库存量*单价。【例题计算题】某工厂需要某种零件,每年需要量为 1200 个,每次订货的订货费用为 300 元,每个零件保管费为 2 元,求每次的最佳订货批量。【答案】设最佳订货批量为 X 个/次则当保管费=订货费时,库存费用最低即 1203XX=600 个/次所以每次的最佳批量为 600 个.【解析】由库存费用=订货费+保管费= (年需

8、要量/ 订货量) *一次订货费+平均库存量*单位物资保管费可推导出当订货费=保管费时库存总费用达到最低,带入已知数据可计算出经济订货量。二、正确评价供应者提供的数量折扣经济订货量是使我们库存费用最低的订货批量,但供应商往往提出如果提高一次订货量,那么会在产品价格方面做出优惠,此时库存费用会增加,我们需要比较才能确定出哪种方案更合适。【例题计算题】某企业年需采购轴承 200 台套,每台套 500 元,每次的订货费用为 250 元,保管费用率为 125%,供应商提出,若每次订货 100 台套,则轴承的进厂价可降为 490 元/台套。试问能否接受这种优惠,每次订货 100台套? (2008.7 真题

9、)【答案】设经济订货量为 X 台套/次则 12050.%52XX=40 台/次此时库存费用为 2500 元成本为 200 500=100000 元总费用为 102500 元优惠后库存费用为1200491.53562.2总成本为 200 490=98000总费用为 3562.5+98000=101562.5方案枝状态枝 概率方案枝方案枝决策点收益值4所以接受这种优惠【解析】分别计算不同方案下的总费用,选择费用较少的方案。第五章 线性规划【例题计算题】用图解法解线性规划问题:max F=2X1+4X2s.t. 4X1+5X2402X1102X28【答案】如图所示如图所示,当 X1=2,X2=6.4

10、 时,取得最大值为 29.6。【解析】图中阴影部分为可行解区,若有最优解,则最优解在可行解区的凸交点上,过交点画平行于目标函数的等值线(这里为等利润线,图中虚线) ,原点距离等利润线越远,说明利润越大,所以最远那条等利润线经过的那个交点即为最优解。三、应用示例【例题计算题】 用单纯形法求解目标函数: MaxZ=2X1+X2约束条件:X2 10;2X1+5X2 60;X1+X2 18;3X1+X2 44;X1,X2 0。答案:引入松弛变量 X3,X4,X5,X6 把不等式变为等式。X2+X3=10;2X1+5X2+X4=60;X1+X2+X5=18;3X1+X2+X6=44;X1,X2 ,X3,

11、X4,X5 ,X6 0初始单纯形表为:Cj 2 1 0 0 0 0 Z基变量 X1 X2 X3 X4 X5 X6 常数0 X3 0 1 1 0 0 0 100 X4 2 5 0 1 0 0 600 X5 1 1 0 0 1 0 180 X6 3 1 0 0 0 1 44Zj 0 0 0 0 0 0 0Cj-Zj 2 1 0 0 0 0 Z进行迭代求解2x2x11028(2,6.4)(7.5,2)(2,2)5第一次迭代:Cj 2 1 0 0 0 0 Z基变量 X1 X2 X3 X4 X5 X6 常数0 X3 0 1 1 0 0 0 100 X4 0 13/2 0 1 0 -2/3 92/30 X

12、5 0 2/3 0 0 1 -1/3 10/32 X1 1 1/3 0 0 0 1/3 44/3Zj 2 2/3 0 0 0 2/3 88/3Cj-Zj 0 1/3 0 0 0 -2/3 Z-88/3第二次迭代:Cj 2 1 0 0 0 0 Z基变量 X1 X2 X3 X4 X5 X6 常数0 X3 0 0 1 0 -1.5 0.5 50 X4 0 0 0 1 -6.5 1.5 91 X2 0 1 0 0 1.5 -0.5 52 X1 1 0 0 0 -0.5 0.5 13Zj 2 1 0 0 0.5 0.5 31Cj-Zj 0 0 0 0 -0.5 -0.5 Z-31所以最优解为 X1=13

13、,X2=5,X3=5,X4=9 ,X5=X6=0 时,MaxZ=31。【解析】该问题为一个完整的单纯形法求解过程,考试过程中从中间挑出一部分作为考试题目.第六章 运输问题复习建议本章在历年考试中,处于相当重要的地位,建议学员全面掌握,重点复习。从题型来讲包括单项选择题、填空题、名词解释和计算题题型都要加以练习。重要考点:西北角法;闭合回路法和修正分配法等。6.1 运输问题及其特殊结构一、运输问题产销平衡表销地 产地 B1 B2 . Bn 产量A1 X11 X12 X1n a1. .Am Xm1 Xm2 Xmn an销量 b1 b2 bn每一格中的具体运输数量我们不确定,我们可以设为 Xij,代

14、表从第 i 个产地运往第 j 个销售地点的运输数量,对于不同的运输数量,会产生不同的总运费,我们的目地就是找出所有满足要求限制的可能的运输数量的分配方案,然后从这些运输方案中选择最优的即总运费最低的方案。运输问题的解:使得总运费最低的具体运输数量。单位运价表销地 产地 B1 B2 . BnA1 C11 C12 C1n.Am Cm1 Cm2 Cmn单位运价表中每一个数据代表从不同产地运输一单位产品到不同销售地点所产生的运费,我们用 Cij 表示。产销平衡表和单位运价表是一一对应的,我们可以把这两个表合为一个表称为平衡表。二、表上作业法该方法分为下面三个步骤:1、找到一个初始方案 62、根据判定标

15、准判断是否最优3、若不是最优,对该案进行改进,然后重复第 2、3 步直到求出最优解来为止。6.2 供需平衡的运输问题运输问题存在供需平衡、供大于需和供小于需三种情况其模型结构是不同的。我们先来看供需平衡问题,下面举例予以说明:某一运输问题的产销平衡表和单位运价表如下图所示平衡表B1 B2 B3 产量10 20 30A15030 20 40A260销量 20 50 40 110该表是产销平衡表和单位运价表合起来的,每一格中右上角小格对应的是单位运费。1、求的一个初始的运输方案利用西北角法求的初始方案:B1 B2 B3 产量10 20 30A120 30 5030 20 40A220 40 60销

16、量 20 50 40 110数字格数=m+n-1,该问题数字格数=2+3-1=5,若不相等则称出现了退化现象,总格数为 mn,除了数字格数,剩下的 mn-(m+n-1)为空格数。方案确定了,该方案对应的总运费就确定了,此时产生的运输费用为:, Z=20*10+30*20+20*20+40*40=2800 但此方案一般不是最优方案(即总运费是否最小) ,需要我们进一步的判断。2、判定是否最优判定标准:(1)改进路线:从某一空格开始,所寻求的那一条企图改变原来运输方案的路线。例如 A1B3 空格,字母公式表达:LA1B3=+A1B3-A2B3+A2B2-A1B2 ; +代表增加运输数量,-代表减少

17、运输数量,注意,每条改进路线中只包含一个空格。同理我们可以找到余下空格的改进路线。每一个空格对应一条改进路线,要把所有的改进路线全部找出来。(2)改进指数:沿着改进路线,当货物的运输量做一个单位的改变时,会引起的总运输费用的该变量。以 A1B3 格来举例,在沿着改进路线的格中,又增加运费的,也有减少运费的,总的变化量为:IA1B3=+30-40+20-20=-10,这个数值即为改进指数,为负值说明沿着这条路线改变一个单位可以减少 10 的总运费,同时表明既然能减少运费,说明原来的方案还有改进的空间,所以原来的方案那就不是最优方案,所以说改进指数就是判别的标准,为负值说明还能改进,为正值说明再改

18、的结果为增加运费,原来的方案就是最优方案。当然这里要求每个空格的改进指数都要求出来都为正值才能说明原方案是最优方案,有一个为负值就不是最优方案。3、寻求改进方案寻求改进方案的方法主要有闭合回路法和修正分配法(1)闭合回路法在所有空格中,挑选绝对值最大的负改进指数所在的空格作为调整格,沿着该空格的改进路线,挑选是负号格的最小运量为调整运量。(2)修正分配法修正分配法也叫位势法。把原来的运输图进行一些改进,在图的顶上加上一行,在图的左侧加上一列.K1=10 K2=20 K3=40B1 B2 B3 产量10 20 30R1=0 A120 30 5030 20 40R2=0 A220 40 60销量

19、20 50 40 1107根据数字格列出方程:C=R+KR1+K1=10R1+K2=20R2+K2=20R2+K3=40令 R1=0,依次解出剩下的为:K1=10,K2=20,R2=0,K3=40对空格求改进指数(位势差)位势差=C-R-KIA1B3=30-0-40=-10IA2B1=30-0-10=20在所有空格中,挑选绝对值最大的负改进指数所在的空格作为调整格,沿着该空格的改进路线,挑选是负号格的最小运量为调整运量进行改进,得到新方案再重复判定、改进过程即可。第七章 网络计划技术三、箭线式网络图的编绘【例题计算题】某工程工序活动明细如下表所示:【答案】【例题计算题】下图是截取网络图的一部分

20、,在图中空白处填入有关活动和结点的网络时间(单位:天) 。 【答案】工序 紧前工序 工作时间(天)A 无 20B 无 15C A,B 15D A 15E A,B 10F D,E 10G C,F 25H D,E 1510 0935 45320 20520 25735 351145 451370 70A20D15H15G25B15 C15F 10E10E11D1010 1010 1071951737 8【解析】考察基本公式的计算,这里尽可能用数形结合的方法记忆。记住口诀:(1)最早时间:从前往后挨个加,遇到分叉选大的;(2)最迟时间:从后往前挨个减,遇到分叉选小的。第八章 图论方法【例题计算题】某

21、自来水公司欲在某地区各高层住宅楼间敷设自来水管道并与主管道相连。其位置如下图,节点代表各住宅楼和主管道位置,线上数字代表两节点间距离(单位:百米) 。如何敷设才能使所用管道最少?【答案】【解析】按照克鲁斯喀尔的算法很轻松得出答案。8.4 最短路线问题最短路线问题为当通过网络的各边所需要的时间、距离或费用已知时,寻求两点间的距离最短或费用最少的路性问题。采用的方法为逆向推算法。【例题计算题】某城市东到西的交通道路如下图所示,线上标注的数字为两点间距离(单位:千米) 。某公司现需从市东紧急运送一批货物到市西。假设各条线路的交通状况相同,请为该公司寻求一条最佳路线。E11D1071071710177

22、108181019718 19517 17 1737 732651 451094 7 3.5623832651 45 4 3.5231 47西东 2 583 6343234 46 7735779【答案】【解析】从终点逆向标到起点即可说明:方框中的数字代表改点到终点最短距离;方框上的标示从改点到终点最短路线的走法。8.5 最大流量问题最大流量问题,就是在一定条件下,要求流过网络的流量为最大的问题。【例题计算题】某网络如图,线上标注的数字是单位时间通过两节点的流量。试求单位时间由网络始点到网络终点的最大流量(单位:吨) 。 【答案】第一条路:1246 流量为 5 吨第二条路:1346 流量为 2

23、吨第三条路:1356 流量为 6 吨所以最大流量为 5+2+6=13 吨。【解析】路线的选择顺序不唯一,但不管哪种选择最终的总流量是相等的。小结:三种求解问题方法在实际中的应用1、最小枝杈树问题主要应用于管道、电话线、电线、网线等线路铺设中(总路线最短) 。2、短路线问题为当通过网络的各边所需要的时间、距离或费用已知时,寻求两点间的距离最短或费用最少的路性问题(两点间距离最短) 。3、最大流量问题,就是在一定条件下,要求流过网络的流量为最大的问题。第九章 马尔科夫分析9.1 马尔科夫分析的数学原理在 20 世纪初(1907 年)俄国数学家马尔科夫发现:在某些事物的概率转换过程中,第 N 次试验

24、的结果,常常由第 N-1 次的试验结果所决定。概率向量:任意一个向量 u=(u1,u2,un),如果它内部的各个元素为非负数,且总和等于 1,则称此向量为概率向量。2、概率矩阵:一方阵每一行都是概率向量,则称为概率矩阵。3、平衡概率矩阵(或固定概率矩阵):东-1-4-7-西121-4-7-西101 47西东 2 583 6343234 46 77735777-西34-7-西72-5-7-西155-7-西103-6-8-西146-8-西118-西742136510设有概率矩阵 ,121212.nnnppP当 ,必有: ,称作平衡(固定)概率矩阵。n12.nnzzzz9.2 马尔科夫分析问题的要求

25、设第一周期的市场份额为 T1,转移概率矩阵为 P,则第二周期的市场份额为 T2=T1*P,以此类推可以得出任意周期的市场份额。【例题计算题】甲、乙两家啤酒厂同时向市场投放一种啤酒,初时,它们所占市场份额相等。第二年,两啤酒厂为吸引顾客,都改换了各自的产品包装,其结果是:甲保持其顾客的 70%,丧失 30%给乙;乙保持其顾客的 60%,丧失 40%给甲。第三年,假设顾客的购买倾向与第二年末相同,但甲、乙都为自己的产品大做广告,其结果是:甲保持其顾客的 90%,丧失 10%给乙;乙保持其顾客的 80%,丧失 20%给甲。 问:第二年末,两家啤酒厂各占多少市场份额?【答案】由已知得第一年市场份额 =

26、(0.5,0.5),第二年对应的概率矩阵为1TP=0.7346所以第二年末的市场份额为 = P=(0.5,0.5) =(0.55,0.45)2T10.7346【解析】预测未来一个周期的市场份额为现在市场份额与转移概率的乘积。5、最终(平衡)市场份额的确定不同销售者在销售过程中的市场份额每个周期都在改变,若消费者的选择概率不变,那么市场份额在经过一个较长时期的转换后会一直不变,我们称为最终(平衡)的市场份额。计算方法:最终平衡时,可推导出公式 T=TP,利用该公式列出线性方程组,在加上概率向量 T 本身的特点即非负且之和为 1,解出未知数来即可。【例题计算题】 某商场对甲 ,乙,丙三种品牌服装的

27、顾客作调查:原穿甲牌仍然继续穿甲牌的人占 75%,改穿乙牌的人占 10%,改穿丙牌的人占 15%。原穿乙牌仍然继续穿乙牌的人占 60%,改穿丙牌的人占 20%,改穿甲牌的人占 20%。原穿丙牌仍然继续穿丙牌的人占 90%,改穿乙牌的人占 5%,改穿甲牌的人占 5%。试问:最终这三种品牌服装的市场占有率分别为多少(保留三位有效数字) ?【答案】由已知的该问题的转移概率矩阵为:0.7510.5262.9设最终这三种品牌服装的市场占有率分别为 X1,X2,X3由 (X1,X2,X3) =(X1,X2,X3)得方程组为0.7510.5262.90.75X1+0.20X2+0.05X3=X10.10X1+0.60X2+0.05X3=X20.15X1+0.20X2+0.90X3=X3且由题意得 X1+X2+X3=1解方程组得:X1=0.236,X2=0.137,X3=0.627即三种品牌的服装最终市场占有率分别为:甲:23.6%,乙:13.7% ,丙:62.7%。【解析】考察最终市场份额的间接求法。在这里解方程组有点难度,建议带好计算器。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。