函数定义域值域及表示.doc

上传人:gs****r 文档编号:1477976 上传时间:2019-03-02 格式:DOC 页数:7 大小:221KB
下载 相关 举报
函数定义域值域及表示.doc_第1页
第1页 / 共7页
函数定义域值域及表示.doc_第2页
第2页 / 共7页
函数定义域值域及表示.doc_第3页
第3页 / 共7页
函数定义域值域及表示.doc_第4页
第4页 / 共7页
函数定义域值域及表示.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、戴氏教育簇桥校区 高一数学 授课老师:唐老师1函数定义域值域及表示(1)函数的概念设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:AB 为从集合 A 到集合 B 的一个函数记作: y=f(x),xA其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:如果只给出解析式 y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间

2、的形式构成函数的三要素:定义域、对应关系和值域再注意:1)构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)(2)区间的概念及表示法设 是两个实数,且 ,满足 的实数 的集合叫做闭区间,记做 ;满足,ababxbx,ab的实数 的集合叫做开区间,记做 ;满足 ,或 的实数 的xx(,)abxx集合叫做半开半闭区间,分别记做 , ;满足 的

3、实数 的集,),xa合分别记做 ,)(,(ab注意:对于集合 与区间 ,前者 可以大于或等于 ,而后者必须 |x,)abab(3)求函数的定义域时,一般遵循以下原则: 是整式时,定义域是全体实数()fx 是分式函数时,定义域是使分母不为零的一切实数 是偶次根式时,定义域是使被开方式为非负值时的实数的集合()fx对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1戴氏教育簇桥校区 高一数学 授课老师:唐老师2 中, tanyx()2kZ零(负)指数幂的底数不能为零若 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初()f等函数的定义域的交集对于

4、求复合函数定义域问题,一般步骤是:若已知 的定义域为 ,其复合函数()fx,ab的定义域应由不等式 解出()fgx()agxb对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法:观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值配方法:将函数解析式化成含有自

5、变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值判别式法:若函数 可以化成一个系数含有 的关于 的二次方程()yfxyx,则在 时,由于 为实数,故必须有2()()0ayxbc0ay,,从而确定函数的值域或最值4()y不等式法:利用基本不等式确定函数的值域或最值换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值数形结合法:利用函数图象或几何方法确定函数的值域或最值函数的单调性法戴氏教育簇桥校区 高一数学 授课老师:唐老师3例题讲解例 1 求下列函数的

6、定义域: 2153xy 21()xy(3) (4)g(x)= xf0)1() 21x例 2 求抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于 x 的。1)设 的定义域是3, ,求函数 的定义域。)(xf 2)2(f2) 已知 y=f(2x+1)的定义域为-1,1 ,求 f(x)的定义域;戴氏教育簇桥校区 高一数学 授课老师:唐老师43) 已知 y=f(x+3)的定义域为1,3 ,求 f(x-1)的定义域.4)若函数 的定义域为1,1,求函数 + 定义域)(xfy)41(xfy(f例 3 设 x 取实数,则 f(x)与 g(x)表示同一个函数的是( )A、 , B、 , )(f2x)

7、(gx)(f22)x(gC、 , D、 ,1)x(f0)1(39)(f23例 4 下列四个函数中,与y=x表示同一函数的是( )A.y=( x)2 B.y= 3xC.y= 2xD.y= x2例 5 判断下列各组中的两个函数是同一函数的为( ) , ;3)5(1xy52xy , ;1)1( , ;xf)(2)(g , ;3431Fx , 。21)5()xf 5)(f戴氏教育簇桥校区 高一数学 授课老师:唐老师5A、 B、 C D、例 6 在映射 , ,且 ,则与 A中f: ,|)(RyxBA ),(),:yxyxf中的元素 对应的 B 中的元素为( ))2,1((A) (B) (C ) (D )

8、3)3,1()3,1()1,3(例 7 若 能构成映射,下列说法正确的有 ( ):f(1) A 中的任一元素在 B 中必须有像且唯一;(2) A 中的多个元素可以在 B 中有相同的像;(3) B 中的多个元素可以在 A 中有相同的原像;(4)像的集合就是集合 B.A、1 个 B、2 个 C、3 个 D、4 个例 8求函数值域1)观察法 2)图象法 3)分式分离常数法 4)换元法5)判别式法 6)配方法 7)函数单调性法 8)反解 1) 35xy(2) 2xy(3) (4)132xy xy31戴氏教育簇桥校区 高一数学 授课老师:唐老师6例 9求函数解析式(1)配凑法; (2)换元法; (3)待定系数法; (4)方程组法(1)已知 ,求 ;31()fxx()f(2)已知 (x1)=3x1,求 ;f ()fx(3)已知 是一次函数,且满足 ,求 ;()fx3(1)2()17fxfx()fx戴氏教育簇桥校区 高一数学 授课老师:唐老师7(4)已知 满足 ,求 ()fx12()3fx()f

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 企业管理资料库 > 生产营运

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。